Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

上传人:b****4 文档编号:5474451 上传时间:2023-05-08 格式:DOCX 页数:20 大小:802.37KB
下载 相关 举报
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第1页
第1页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第2页
第2页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第3页
第3页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第4页
第4页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第5页
第5页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第6页
第6页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第7页
第7页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第8页
第8页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第9页
第9页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第10页
第10页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第11页
第11页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第12页
第12页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第13页
第13页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第14页
第14页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第15页
第15页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第16页
第16页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第17页
第17页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第18页
第18页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第19页
第19页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

《Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx》由会员分享,可在线阅读,更多相关《Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx(20页珍藏版)》请在冰点文库上搜索。

Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

ApplicationofTopologySizeandShapeOptimizationMethodsinPolymerMetalHybridStructural

ApplicationofTopology,SizeandShapeOptimizationMethodsinPolymerMetalHybridStructuralLightweightEngineering

Abstract

Applicationoftheengineeringdesignoptimizationmethodsandtoolstothedesignofautomotivebody-in-white(BIW)structuralcomponentsmadeofpolymermetalhybrid(PMH)materialsisconsidered.Specifically,theuseoftopologyoptimizationinidentifyingtheoptimalinitialdesignsandtheuseofsizeandshapeoptimizationtechniquesindefiningthefinaldesignsisdiscussed.TheoptimizationanalysesemployedwererequiredtoaccountforthefactthattheBIWstructuralPMHcomponentinquestionmaybesubjectedtodifferentin-serviceloadsbedesignedforstiffness,strengthorbucklingresistanceandthatitmustbemanufacturableusingconventionalinjectionover-molding.Thepaperdemonstratestheuseofvariousengineeringtools,i.e.aCADprogramtocreatethesolidmodelofthePMHcomponent,ameshingprogramtoensuremeshmatchingacrossthepolymer/metalinterfaces,alinear–staticanalysisbasedtopologyoptimizationtooltogenerateaninitialdesign,anonlinearstatics-basedsizeandshapeoptimizationprogramtoobtainedthefinaldesignandamold-fillingsimulationtooltovalidatemanufacturabilityofthePMHcomponent.

Keywords

Topology,Optimization,HybridStructural,LightweightEngineering

1.Introduction

Lightweightengineeringforautomobilesisprogressivelygaininginimportanceinviewofrisingenvironmentaldemandsandever-tougheremissionsstandards.Currenteffortsintheautomotivelightweightengineeringinvolveatleastthefollowingfivedistinctapproaches[1]:

(a)Requirementlightweightengineeringwhichincludeseffortstoreducethevehicleweightthroughreductionsincomponent/subsystemrequirements(e.g.areducedrequiredsizeofthefueltank);(b)Conceptuallightweightengineeringwhichincludesthedevelopmentandimplementationofnewconceptsandstrategieswithpotentialweightsavingssuchastheuseofaself-supportingcockpit,astraightenginecarrier,etc.;(c)Designlightweightengineeringwhichfocusesondesignoptimizationoftheexistingcomponentsandsub-systemssuchastheuseofribsandcomplexcrosssectionsforenhancedcomponentstiffnessatareducedweight;(d)Manufacturinglightweightengineeringwhichutilizesnovelmanufacturingapproachestoreducethecomponentweightwhileretainingitsperformance(e.g.acombinedapplicationofspotweldingandadhesivebondingtomaintainthestiffnessofthejoinedsheet-metalcomponentswithreducedwallthickness);and(e)Materiallightweightengineeringwhichisbasedontheuseofmaterialswithahighspecificstiffnessand/orstrengthsuchasaluminumalloysandpolymer-matrixcompositesorasynergisticuseofmetallicandpolymericmaterialsinahybridarchitecture(referredtoaspolymermetalhybrids,PMHs,intheremainderofthismanuscript).Inthepresentwork,theproblemofintegrationoftheengineeringoptimizationmethodsandtoolsintotheaforementionedlightweightengineeringefforts,specificallyintoPMHtechnologyforbody-in-white(BIW)load-bearingautomotivecomponentsprocessedbytechniquessuchasinjectionover-molding[2]ormetalover-molding[3].Suchcomponentsaretypicallydesignedforstiffnessandbucklingresistanceandtheirperformanceisgreatlyaffectedbythedesignoftheplasticribbingstructureinjectionmoldedintoasheet-metalstamping.

Inconventionalautomotivemanufacturingpractice,metalsandplasticsarefiercecompetitors.ThePMHtechnologies,incontrast,aspiretotakefulladvantageofthetwoclassesofmaterialsbycombiningtheminasinglecomponent/sub-assembly.Thefirstexampleofasuccessfulimplementationofthistechnologicalinnovationinpracticewasreportedattheendof1996,whenthefrontendoftheAudiA6(madebyEcia,Audincourt/France)wasproducedasahybridstructure,combiningsheetsteelwithelastomer-modifiedpoly-amidePA6-GF30(DurethanBKV130fromBayer).Akeyfeatureofhybridstructuresisthatthematerialsemployedcomplementeachothersothattheresultinghybridmaterialcanofferanenhancedoverallstructuralperformance.

Currently,PMHsarereplacingall-metalstructuresinautomotivefront-endmodulesatanacceleratedrateandarebeingusedininstrument-panelandbumpercross-beams,doormodules,andtailgatesapplications.Moreover,newPMHtechnologiesarebeing

introduced.

ThemainPMHtechnologiescurrentlybeingemployedintheautomotiveindustrycanbegroupedintothreemajorcategories:

(a)Injectionover-moldingtechnologies[2];(b)Metal-over-moldingtechnologiescombinedwithsecondaryjoiningoperations[3];and(c)Adhesively-bondedPMHs[4].AdetaileddescriptionforeachofthesegroupsofPMHmanufacturingtechnologiescanbefoundinourrecentwork[5].

Theobjectiveofthepresentworkistoextendtheaforementionedtwo-stepoptimizationapproachtoBIWloadbearingPMHcomponents.Atypicalall-metalBIWloadbearingcomponent,Figure1(a),consistsoftwoflangedU-shapestampingsjoinedalongtheirmatchingflangesbyspot-welding(oftencomplementedbyadhesivebonding).Whensuchanall-metalcomponentisreplacedwithaPMHcomponent,Figure1(b),oneofitsstampingsisremovedandtheexterioroftheremainingstampingreinforcedusinganinjection-moldedthermoplasticrib-likestructure.Hence,theobjectiveofthepresentworkistoaddresstheoptimalarchitectureoftheribbingstructurewithrespecttodifferentloadingrequirements(axialcompression,bending,twisting)anddifferentdesignrequirements(e.g.stiffness,strength,bucklingresistance).Theexamplesconsideredshowhowtopologyoptimizationmaybeusedtosuggestgoodinitialdesigns,butalsodemonstrateshowatopologyoptimizationfollowedbyadetailedsizeandshapeoptimizationmaybeusedtoprovideefficientdesignssatisfyingperformanceandmanufacturingconstraints.

Fig.1(a)Atwin-shellall-metalrearcross-roofmemberand(b)itspolymermetalhybridcounterpartconsistingasinglemetal-shellstampingandinjection-moldedplasticribbing.

Theorganizationofthepaperisasfollows:

Anoverviewofthebasicsoftopology,

sizeandshapeoptimizationmethodsispresentedandabriefdescriptionofthemaincomputationaltoolsusedinthepresentworkisgiveninSectionII.TheresultsobtainedinthepresentworkarepresentedanddiscussedinSectionIII.ThemainconclusionsresultingfromthepresentworkaresummarizedinSectionIV.

 

2.ComputationProcedure

2.1TheBasicsofStructuralTopology,SizeandShapeOptimization

Structuraloptimizationisaclassofengineeringoptimizationproblemsinwhichthe

evaluationofanobjectivefunction(s)orconstraintsrequirestheuseofstructural

analyses(typicallyafiniteelementanalysis,FEA).Incompactform,theoptimization

problemcanbesymbolicallydefinedas:

Minimizetheobjectivefunctionf(x)

Subjecttothenon-equalityconstraintsg(x)<0andtotheequalityconstraints

h(x)=0

WherethedesignvariablesxbelongtothedomainD

where,ingeneral,g(x)andh(x)arevectorfunctions.Thedesignvariablesxformavectorofparametersdescribingthegeometryofaproduct.Forexample,x,f(x)

g(x)andh(x)canbeproductdimensions,productweight,astressconditiondefiningtheonsetofplasticyielding,andconstraintsonproductdimensions,respectively.

TopologyOptimization

Topologyoptimizationmethodsallowthechangesinthewaysubstructuresareconnectedwithinafixeddesigndomainandcanbeclassifiedas(a)discreteelement

(alsoknownasthegroundstructure)approach;and(b)continuumapproaches.Inthe

discreteelementapproach,thedesigndomainisrepresentedasafinitesetofpossible

locationsofdiscretestructuralmemberssuchastruss,frame,andpanels.Byvaryingthewidth/thicknessofeachmemberinthedesigndomainbetweenzero(inthiscasetheelementbecomesnonexistent)andacertainmaximumvalue,structureswithdifferentsizesandtopologiescanberepresented.Inthecontinuumapproach,thedesigndomainisrepresentedasthecontinuummixtureofamaterialand“void”andtheoptimaldesignisdefinedwithrespecttothedistributionsofthematerialdensitywithinthedesignspace.Sincethediscreteelementapproachutilizesacollectionofprimitivestructuralmembers,itallowseasyinterpretationoftheconceptualdesign.However,potentiallyoptimaltopologiesmaynotbeattainablebythenumberandtypesofpossiblememberlocationsdefinedinthedesigndomain.Thecontinuumapproach,ontheotherhand,doesnothavethislimitation,whileitmaybecomputationallymoreexpensive.Overthelastdecades,majoradvanceshavebeenreportedintheareaofthediscreteelementstructuraloptimization[6-10].

SizeOptimization

Withinsizeoptimizationapproach,thedimensionsthatdescribeproductgeometryare

usedasdesignvariables,x.Theapplicationofsizeoptimizationis,consequently,mostlyusedatthedetaileddesignstagewhereonlythefinetuningofproductgeometryisnecessary.Sizeoptimizationistypicallydoneinconjunctionwithfeature-basedvariationgeometry[11]whichisavailableinmanymodernCADprograms.Withpresent-dayavailabilityoffastpersonalcomputers,sizeoptimizationisrelativelyastraightforwardtaskandittypicallyrequiresnore-meshingofthefiniteelementmodelsduringoptimizationiterations.Adifficultymayarise,however,whenextremelylargefiniteelementmodelsorhighlynonlinearphenomenaneedtobeanalyzed,inwhichcasesurrogate(simplified)modelsaretypicallyemployed.

ShapeOptimization

Shapeoptimizationallowsthecha

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2