整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx

上传人:b****2 文档编号:5753694 上传时间:2023-05-05 格式:DOCX 页数:38 大小:637.09KB
下载 相关 举报
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第1页
第1页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第2页
第2页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第3页
第3页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第4页
第4页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第5页
第5页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第6页
第6页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第7页
第7页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第8页
第8页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第9页
第9页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第10页
第10页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第11页
第11页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第12页
第12页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第13页
第13页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第14页
第14页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第15页
第15页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第16页
第16页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第17页
第17页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第18页
第18页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第19页
第19页 / 共38页
整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx_第20页
第20页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx

《整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx》由会员分享,可在线阅读,更多相关《整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx(38页珍藏版)》请在冰点文库上搜索。

整理数控直流电源+简易音阶发生器设计+高效率PWM音频功率放大器+调频发射与接收系统设计Word下载.docx

采用6片74LS164通过串行口工作方式实现,LED用共阳极显示器可省去位驱动;

④用CPLD(或FPGA)完成译码,动态扫描显示。

4、输出采集部分

输出采集部分有输出电压采集和输出电流采集两块,可以采用以下参考方案:

输出电压通过在输出端分压电阻上取样获取,输出电流取样可通过负载中串取样电阻来获取,取样得到的电压值,通过运算放大器隔离后送给A/D转换器,电流取样电阻可取1欧。

注意:

①电压、电流取样要共地;

②运算放大器输出的电压不要超出A/D的输入范围。

第2节 课题内容及实施步骤

由于课题内容多又有相当的工作量,在完成硬件整体设计后,按先易后难、先小后大,先硬件后软件按功能模块进行实验和调试,建议如下:

实验一 输出电路模块性能调试实验

1、电路原理

采用运算放大器、MOS管功率放大电路组成输出电路模块示例如图1.2所示,运放A1构成反向比例电路,输入Vi为0∽-5V通过R12调节后作为A1的输入信号(采用-5V的目的是和以后的D/A转换器相协调),试分析运放A2和输出MOS管T1构成什么类型的负反馈?

它的作用是什么?

R6和R7构成输出电压取样电路,其中R7上的电压将通过放大器送往A/D转换;

R10为1欧电阻,它和RL串联后构成电流取样,R10上的电压正比于输出电流,该电压通过放大后送往A/D转换。

图1.2输出模块

2、电路参数测试

在测试前,先进行满度调整。

Vi输入-5.0V,调整电位器R5和电位器R12,使Vo=12.0V,完成满度调整,自己拟定测试方案和步骤。

(1)测量RL=∞时Vi和Vo的关系填入表1.1

表1.1RL=∞时Vi和Vo的关系

Vi

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

-4.0

-4.5

-5.0

Vo

(2)接入RL=120欧电阻,测试Vi和Vo的关系,自己制表1.2,填入测试值。

建议Vi输入同表1.1,测试后分析对比表1.1和表1.2的值,说明电路负反馈的作用和效果。

(3)在完成上述

(1)

(2)项目测试后,适当更改电路,加入D/A转换器如图1.3所示,参照数字电子技术实验中D/A转换部分,通过DIP开关输入数字量,测试数字量Di和

图1.3带D/A的输出模块

输出电压和Vo的关系,自己制表1.3,填入给定数字量Di和Vo的测试值。

 

实验二 数控模块和输出模块的软、硬件联合调试实验

采用单片机、外围逻辑器件和D/A转换器的方案示例连接如图1.4所示

图1.4单片机和D/A的连接

单片机89C51为D/A转换器提供数字量,经DAC0832转换后在IOUT1和IOUT2给出电流信号,由运放A1转换成模拟电压信号电路。

思考该电路采用何种选址方法?

该方法有什么优缺点?

还可以采用何种选址方法?

2、电路调整和参数测试

(1)画出该部分的软件流程图,通过编程和软件调试,测试运放A1输出和D/A输入的数值量对应关系,自己制订测试步骤,自己制表1.4。

(2)在实验

(1)的基础上,改变89C51的输出数值量,在负载RL端测试输出电压并进行测试记录,自己制订测试步骤,自己制表1.5。

实验三 加入数字显示模块后软、硬件联合调试实验

利用单片机串行口的数字显示电路示例如图1.6所示,单片机89C51具有异步串行口,利用该接口的工作方式0(移位寄存器方式)能适应多位七段码的数据显示.P3.0(RXD端)串行发送显示数据,P3.1(TXD端)输出同步脉冲信号。

采用这种静态显示方式的优点是显示亮度高、稳定性好、编程方便占用软件资源少。

图1.6串行数字显示电路

(1)编制89C51的显示软件(建议显示为一个独立的子程序),通过串行口初始化、设置显示缓冲区、七段码表、发送中断程序等。

(2)通过设置显示参数(自定),调整显示电路的软、硬件,确定该模块工作的正确性。

自己制订测试步骤。

(3)试考虑一种其它显示方案的电路和软件流程。

实验四 加入输出采集模块和键控输入模块进行的

整机联合调试实验

整机电路原理如图1.7,输出采集电路是通过ADC0809对来自于输出电流和电压的两路信号进行模数转换,转换结束后,EOC端给出的结束信号通过INT1脚,向单片机发出中

图1.7整机电路原理

信号,单片机接受中断后,读取A/D转换后的数据。

同向放大器的电路形式和放大倍数由同学预先设计,其原则是放大器的满度输出不要超出+5V!

两个按键“UP”和“DOWN”通过P1.0和P1.1送入单片机,“UP”键的作用是使输出电压按步进上升(步距0.1V),当按住该键不放时,电压连续上升;

“DOWN”键的作用是使输出下降。

2、电路调整和整机参数测试

(1)首先进行采集模块的硬件调试,为了能获取样电压和电流,可以通过另接一个分压电路来做,当然可以利用实验一、实验二和实验三的成果进行采集模块的调试;

编写数据采集中断程序和键控子程序,键控子程序要考虑防抖动问题;

成功后进行整机硬件、软件调试。

(2)整机参数测试:

①精度测试。

用万用表对输出电压和显示电压、输出电流和显示电流进行对比测试,自己制订测试步骤,测试数据自己制表1.6。

②功能测试。

分别按“UP”、“DOWN”键,观察输出电压步进数值是否满足要求。

第3节实验要求

1、预习要求

①由于课题涉及多门课程内容,在预习时要注意有关内容的查阅和研读,通过对各模块电路原理的理解,选定芯片、画出硬件原理图、软件流程图和编制相关软件。

②根据自己情况,预先设计好实验步骤,画出各种测试数据表格。

2、实验报告要求

(1)课题总体设计思想和总体方案,方案的选择与比较。

(2)硬件部分:

阐述自己硬件设计思想,有总体硬件原理图和各次实验的原理图、原理说明和参数设计并附计算过程。

(3)软件部分:

有总的和各次实验的软件流程图(包括子程序和中断程序)及程序清单,程序要有注释。

用EDA的要有波形仿真图。

(4)有各次实验的测试结果并做相关分析和误差分析。

(5)自己创新点的论述。

(6)做本课题的体会。

3、扩展内容

(1)有连续步进功能。

当连续按住“UP”或“DOWN”键超过2秒时,产生连续步进。

(2)有短路保护和报警功能。

当输出发生短路时,能自动关闭输出并用灯光报警;

短路故障解除后,通过“复位”按键恢复输出。

第二章简易音阶发生器设计

①学习和掌握振荡电路设计和滤波器的设计方法;

①产生C调八个音阶的振荡频率(见表2.1),它分别由1、2、3、4、5、7、0号数字键控制。

表2.1音阶的振荡频率和周期表

C调

1

2

3

4

5

6

7

9频率f(HZ)

261.6

293.6

329.6

349.2

392.0

440.0

439.9

523

周期T(ms)

3.82

3.40

3.03

2.80

2.55

2.27

2.09

1.91

②同时按下两个数字键号时,只发出一个音阶频率信号。

③模拟通道的频宽为30Hz~10kHz。

④功率放大器的负载电阻RL=8

,最大功率输出Pomax≥0.5W、效率η≥50%。

⑤能按1-2秒的定时间隔单次和重复发出8个音阶。

⑥能自动演奏简单的曲子(选做)。

第1节 课题原理和课题方案

简易音阶发生器的实现有多种方案,参考方案1如图2.1所示。

它包括按键输入、频率控制器、正弦波振荡器、衰减器和功率放大器五个部分组成。

图2.1简易电子琴参考方案1框图

其中正弦波振荡器电路是产生C调八个音阶的信号源,音调效果取决于准确和稳定的振荡频率,因此,频率控制器是整个系统的关键部分;

按键输入是控制频率控制器给出适当的频率控制字,调节振荡器的输出频率;

衰减器的目的是调节输出音量,最后由功率放大器推动扬声器发出声音。

参考方案2如图2.2所示。

该方案通过用电子开关切换多谐振荡器的频率,多谐振荡器输出的方波通过有源低通滤波器对信号作进一步的处理,滤出高频信号以获得较好的音质效果;

用EDA技术,通过对CPLD/FPGA的编程控制按键输入的译码、定时、演奏方式控制和

自动演奏。

图2.2简易电子琴参考方案2框图

1、音频功率放大器

音频功率放大器可以有以下几种电路结构供参考

(1)采用集成功率放大器构成的电路;

(2)采用互补对称OCL或OTL电路构成功率放大电路;

2、多谐振荡器

方案2采用多谐振荡器可以考虑以下参考方案:

(1)用非门电路构或555电路构成多谐振荡器。

(2)用运算放大器构成多谐振荡器,此时注意运算放大器的电源电压用±

5V,不要太高。

(3)用EDA技术,采用大规模可编程器件CPLD/FPGA,用其中的部分资源来构成多谐振荡器。

(4)用MCU技术,采用单片机、外围逻辑器件和D/A转换器实现,外围逻辑器件主要是用于对A/D,D/A等器件的读写控制和片选控制;

(5)用MCU完成课题的控制和计算部分,用EDA技术完成逻辑整合和数字显示的译码,D/A转换器完成数摸转换。

3、频率控制和正弦波发生器

方案1采用频率控制和正弦波发生器以下方案可供参考:

(1)考虑EDA技术,用CPD/FPGA和D/A芯片进行直接数字频率合成(DDFS)产生正弦波,频率控制精确,切换速度快。

(2)通过MCU控制MAX038构成压控振荡器,直接产生正弦波。

这种方式编程方便,但频率控制精度稍差一些。

(3)用MCU控制DDS芯片AD9850,通过低通滤波器直接产生正弦波。

这种方式由MCU向AD9850发出频率控制字,频率控制精确,切换速度快,且比

(1)容易实现。

第2节 课题实施内容及实验步骤(以方案2为例)

由于课题内容比较多,工作量比较大,在完成硬件整体设计后,按先易后难、先小后大,先硬件后软件按功能模块进行实验和调试,建议如下:

实验一 频率可切换的多谐振荡器

该实验有以下两部分内容

1、多谐振荡器

多谐振荡器电路的一种如图2.3所示,工作原理是利用电容器C的充、放电作用,在输出端获得矩形波。

图2.3RC环形多谐振荡电路

假定在接通电源后,电路最初处于第一暂稳态,即的Vi1=0、Vo1=1、Vo2=0及Vi3=1的状态,此时Vo1高电平经C、R和门G2输出端向C充电,随着充电时间的增加,Vi3的电位不断下降,当Vi3降到Vr=1.4V(TTL的门坎电平)时,电路发生下述正反馈过程

结果使门G1迅速导通,门G2截止,电路处于第二暂稳,即Vo1=0、Vo2=1、Vi3=0及Vo3=1,

这时,Vo2高电平经R、C和门G1输出端向C反充电,使Vi3的电位不断上升,当Vi3上升到Vr=1.4V时,电路又产生下列正反馈过程:

从而使门G2迅速导通和门G1截止,电路又返回到第一暂稳态。

此后,电路重复上述过程,在输出端获得矩形波,振荡频率为

其中RO是与非门的输出电阻、RON是CMOS传输门TG的导通电阻。

此外,还有一点有必

要说明,CMOS传输门建议采用CD4016,它包含有四个独立的双向模拟开关,开关状态由控制信E决定,当E=1时,对应开关的导通电阻RON为几百欧姆;

当E=0时,开关的断开电阻ROFF>

10

2、可编程音阶振荡电路

可编程音阶振荡电路如图2.4所示。

电路由3线—8线译码器和RC环形多谐振荡电路组成,3线—8线译码器的作用是选择不同的CMOS电子开关4051,以获得八个振荡频率。

图2.4可编程音阶振荡电路

对于一组确定的地址码止A2,A1,A0译码器输出线中仅有一线为高电平(Yi=1)使TGi:

导通和电阻Ri接入振荡电路,从而产生频率为

的矩形波。

因此,改变数码A

A

,即可获得不同的振荡频率。

3、电路参数测试

分别对图2.3和图2.4进行实验。

首先计算电路参数,选定电容C和初步选定电阻R0-R7的数值,使电路起振。

通过切换3-8译码器输入A2,A1,A0,调节对应的电阻,使振荡频率满足表2.1的各音阶频率。

填表2.2

表2.2音阶对应的RC参数表

A2A1A0

C=

R0=

R1=

R2=

R3=

R4=

R5=

R6=

R7=

频率

实验二 有源低通滤波器、衰减器和功率放大器

1、二阶有源低通滤波器

二阶有源低通滤波器参考电路如图2.5所示,它的输入Vi4是音阶频率的方波信号,通过设计有源低通滤波器的截止频率参数,可以滤除方波信号中的高频分量,在输出端提取出基波信号Vo4。

图2.5二阶有源低通滤波器

2、衰减器和功率放大器

衰减器主要是对音频信号进行特定频率的提升和衰减,不过在此可以简单地当作输出音量控制来处理,用电位器实现音频信号衰减和对音量的控制。

功率放大器可以采用互补对称OTL或OCL电路来实现,输出功率0.5W即可。

3、电路参数测试

(1)低通滤波器的截止频率测试。

首先确定低通滤波器的截止频率,计算图2.5的电路参数,通过信号发生器来测试和调试低通滤波器的截止频率。

自己拟订测试方案,将调整好的测试数据填入表2.3,并画出低通滤波器的幅-频特性曲线(用半对数坐标)。

表2.3滤波器频率-幅值测试值

Vo4

(2)滤波效果测试。

将实验一的可控多谐振荡器的输出和低通滤波器的输入相连接,切换A2,A1,A0观察各音阶频率的滤波器输出波形,确定滤波器参数的选择是否合适,画出Vi4和Vo4在各个音阶频率的对照波形。

(3)功率放大器测试。

自己画出OCL功率放大器的原理图,设计其参数。

1)静态输出调零。

不加信号负载开路!

将功率放大器输入接地,测试和调节输出使其为零电位。

2)在输出静态为零的前提下,输入和地断开,接入信号源和负载(扬声器),用示波器观察功率放大器的工作是否正常,有无交越失真。

自己拟订测试方案,测试并记录该功率放大器的最大输出功率和效率。

最大输出功率Pmax=输出效率η=

3)将滤波器的输出通过衰减器后加到功率放大器的输入,切换A2,A1,A0听扬声器的音阶声音,调节衰减器到合适音量。

实验三 键控输入及频率控制的实现及整机调试和测试

1、键控输入及频率控制

该部分电路如图2.6所示,按键K0-K7分别相当于8个琴键,CPLD/FPGA用于对按键的识别、电子开关的频率切换,和定时自动演奏;

有源晶振为CPLD/FPGA提供时钟信号。

整个逻辑的实现可通过VHDL语言编程实现。

该部分的关键是VHDL语言编程,程序应该有键值识别模块、译码模块、定时模块和用于自动演奏的控制等模块。

图2.6键控输入及频率控制

2、键控输入电路及整机调试和测试

(1)软件仿真调试。

用MAX+PLUSII或其它EDA软件编完程后,将K0-K7用软件开关来实现,通过波形仿真来观察逻辑关系是否正确。

(2)软件仿真调试通过后,接好硬件电路,用软件定义好并锁定管脚下载程序到芯片中,分别按下K0-K7,测试电子开关输入是否正确。

若结果正确可接上整机其它电路进行试听。

(3)任意定义一个按键作为启动信号,调试定时逻辑和控制逻辑,使电路能按音阶顺序自动演奏。

第3节 实验要求

1.预习要求

(1)由于课题涉及多门课程内容,在预习时要注意有关内容的查阅和研读,理解各模块电路的原理,查阅有关资料选定芯片,画出硬件原理图。

用VHDL等语言编制相关软件,预习MAX+PLUSII的使用说明。

(2)根据自己情况,预先设计好实验步骤、测试方法和画出各种测试数据表格。

2.课题总结报告要求

有软件流程图和程序清单,程序要有注释,用EDA的要有波形仿真图。

3、课题扩展内容

(1)单次自动演奏。

自选或自编一首简曲,通过编程注入CPLD/FPGA中,定义一个单次播放按键,按下后自动演奏一次。

(2)连续自动演奏。

定义一个连续播放和一个停止按键,按下播放键后连续自动演奏,直至按下停止键。

第三章高效率PWM音频功率放大器

本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。

功率放大器部分采用D类功率放大器确保高效,在5V供电情况下输出功率大于1W,且输出波形无明显失真,低频输出噪声电压很低(输出频率为20kHz以下时,低频噪声电压约1mV);

信号变换部分采用差分放大电路,将双端输出信号变为1∶1的单端输出信号;

输出功率显示部分用乘法器电路及带A/D转换的电压表头显示功率值,电路简单合理;

保护电路部分采用电流互感器监控,实现输出短路保护。

1、题目分析及设计方案论证与比较

根据题目要求,整个系统由D类PWM功率放大器、信号转换电路及功率测量显示装置组成。

其中核心部分为D类PWM功率放大器。

之所以选择此方案是因为D类PWM功放能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高频干扰,从而使系统成为高效率、低失真、低干扰的功率放大系统。

系统组成框图如图3.1所示。

下面我们分别论述框图中各部分设计方案。

图3.1系统组成框图

2、总体设计思路

根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器(即D类功率放大器)。

脉宽调制电路(PWM)的脉宽调制原理如图3.2所示。

图3.2脉宽调制原理图

一般的D类放大器电路的工作原理是用“振荡发生器”输出的三角波与来自外部的模拟音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正比例的可变脉宽方波。

此方波通过“数字逻辑电路”输出反相的方波。

在音频信号的前半周(正电压),脉宽调制方波的占空比小于50%,使高端MOS管饱和导通,输出瞬间脉冲电压Vec-0=Vcc。

在音频信号的后半周(负电压),低端MOS饱和导通,电压0-Vec=-Vcc。

将输出的脉宽调制电压经LC低通网络滤除高频成分,在负载端得到与输入模拟信号相似但被放大了的电压。

D放大器虽有较大难度但可大大提高效率,且失真很小,波形放大效果良好,而且配合以较好的滤波网络克服了高频干扰。

系统原理框图如图3.3所示。

可采用AD521实现双端输入变单端输出的信号变换。

在测试部分采用乘法器将变换电路输出的信号电压加以平方,经分压送至表头显示。

图3.3系统原理框图

第1节PWM功率放大器

实验一 三角波发生器及误差放大器

用555芯片构成三角波发生电路,如图3.4所示。

图3.4三角波发生电路

本设计利用555组成的多谐振荡器的C4充放电特性加以改进,实现C4的线性充放电获得三角波。

利用VT1、VT2和R6构成的恒流源对C4实现线性充电,利用VT3、VT4和R7构成的恒流源实现对C4的放电,电容C4的三角波经VT5射极跟随器输出该振荡器的震荡频率f=0.33/(116+R7)C4。

按图中各元件的参数,我们得到了一个线性很好、频率约为100kHz、峰峰值为2.18V的三角波,将其输入到脉宽调制比较器的一个输入端。

该部分的作用是将输入信号按比例放大以便与三角波比较,通过以OP-37运算放大器为核心加上相关元件形成反向比例放大电路,电路如图3.5所示。

图3.5误差放大器电路

R2、R4共同分压将OP-37③脚的电压抬至2.5V,这样可使放大后的波形中点在2.5V处,且是下对称无失真,放大比例系数由R3和R1决定,即A=R3/R1,C1、C3起隔直作用,电容C2的作用是用来限制通频带的宽度。

C2越大,频带越窄;

C2越小,频带越宽。

实验二 脉宽调制比较器及死区时间控制

该部分的作用是将误差放大器输出的波形与三角波发生器输出的波形进行比较。

输出一个脉宽与误差放大器输入信号幅值成比例的可变脉宽方波。

三角波频率远远高于输入信号频率,相当于对输入信号采样点大大增加,从而保证还原后的波形不失真。

其中核心器件为LM139,该芯片为四比较器集成电路。

这里所要注意的是必须使三角波和音频信号的电压中心线重合,即LM139的④、⑤管脚的静态电位相同,否则脉宽调制信号的占空比将不能在要求的范围内变化。

我们通过可调电阻R12来实现这一要求。

脉宽调制比较器电路如图3.6所示。

图3.6脉宽调制比较器电路

提示:

死区时间不应超过调制脉冲的1/10,否则输出的波形将出现明显的失真;

另外,死区时间也不可过短,否则桥路管子将会共同导通,在极短的时间内大电流将从MOS1、MOS2和MOS3、MOS4同时流过,造成电能的损耗,使整体的效率下降,甚至烧毁管子。

所以死区时间的建立是整个D类放大器性能提高的关键之一。

电路如图3.7所示。

图3.7时间建立电路

实验三高速门开关和滤波网络

高速门开关和滤波网络电路如图3.8所示。

驱动电路除注意其驱动

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2