MIMO Systems 所有程序.docx

上传人:b****4 文档编号:5917212 上传时间:2023-05-09 格式:DOCX 页数:34 大小:95.65KB
下载 相关 举报
MIMO Systems 所有程序.docx_第1页
第1页 / 共34页
MIMO Systems 所有程序.docx_第2页
第2页 / 共34页
MIMO Systems 所有程序.docx_第3页
第3页 / 共34页
MIMO Systems 所有程序.docx_第4页
第4页 / 共34页
MIMO Systems 所有程序.docx_第5页
第5页 / 共34页
MIMO Systems 所有程序.docx_第6页
第6页 / 共34页
MIMO Systems 所有程序.docx_第7页
第7页 / 共34页
MIMO Systems 所有程序.docx_第8页
第8页 / 共34页
MIMO Systems 所有程序.docx_第9页
第9页 / 共34页
MIMO Systems 所有程序.docx_第10页
第10页 / 共34页
MIMO Systems 所有程序.docx_第11页
第11页 / 共34页
MIMO Systems 所有程序.docx_第12页
第12页 / 共34页
MIMO Systems 所有程序.docx_第13页
第13页 / 共34页
MIMO Systems 所有程序.docx_第14页
第14页 / 共34页
MIMO Systems 所有程序.docx_第15页
第15页 / 共34页
MIMO Systems 所有程序.docx_第16页
第16页 / 共34页
MIMO Systems 所有程序.docx_第17页
第17页 / 共34页
MIMO Systems 所有程序.docx_第18页
第18页 / 共34页
MIMO Systems 所有程序.docx_第19页
第19页 / 共34页
MIMO Systems 所有程序.docx_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

MIMO Systems 所有程序.docx

《MIMO Systems 所有程序.docx》由会员分享,可在线阅读,更多相关《MIMO Systems 所有程序.docx(34页珍藏版)》请在冰点文库上搜索。

MIMO Systems 所有程序.docx

MIMOSystems所有程序

IntroductiontoMIMOSystems

ThisdemointroducesMultiple-Input-Multiple-Output(MIMO)systems,whichusemultipleantennasatthetransmitterandreceiverendsofawirelesscommunicationsystem.MIMOsystemsareincreasinglybeingadoptedincommunicationsystemsforthepotentialgainsincapacitytheyrealizewhenusingmultipleantennas.Multipleantennasusethespatialdimensioninadditiontothetimeandfrequencyones,withoutchangingthebandwidthrequirementsofthesystem.

Foragenericcommunicationslink,thisdemofocusesontransmitdiversityinlieuoftraditionalreceivediversity.Usingtheflat-fadingRayleighchannel,itillustratestheconceptofOrthogonalSpace-TimeBlockCoding,whichisemployablewhenmultipletransmitterantennasareused.Itisassumedherethatthechannelundergoesindependentfadingbetweenthemultipletransmit-receiveantennapairs.

Forachosensystem,italsoprovidesameasureoftheperformancedegradationwhenthechannelisimperfectlyestimatedatthereceiver,comparedtothecaseofperfectchannelknowledgeatthereceiver.

Contents

∙PART1:

TransmitDiversityvs.ReceiveDiversity

∙PART2:

Space-TimeBlockCodingwithChannelEstimation

∙PART3:

OrthogonalSpace-TimeBlockCodingandFurtherExplorations

PART1:

TransmitDiversityvs.ReceiveDiversity

Usingdiversityreceptionisawell-knowntechniquetomitigatetheeffectsoffadingoveracommunicationslink.However,ithasmostlybeenrelegatedtothereceiverend.In[1],Alamoutiproposesatransmitdiversityschemethatofferssimilardiversitygains,usingmultipleantennasatthetransmitter.Thiswasconceivedtobemorepracticalas,forexample,itwouldonlyrequiremultipleantennasatthebasestationincomparisontomultipleantennasforeverymobileinacellularcommunicationssystem.

Thissectionhighlightsthiscomparisonoftransmitvs.receivediversitybysimulatingcoherentbinaryphase-shiftkeying(BPSK)modulationoverflat-fadingRayleighchannels.Fortransmitdiversity,weusetwotransmitantennasandonereceiveantenna(2x1notationally),whileforreceivediversityweemployonetransmitantennaandtworeceiveantennas(1x2notationally).

Thesimulationcoversanend-to-endsystemshowingtheencodedand/ortransmittedsignal,channelmodel,andreceptionanddemodulationofthereceivedsignal.Italsoprovidestheno-diversitylink(singletransmit-receiveantennacase)andtheoreticalperformanceofsecond-orderdiversitylinkforcomparison.Itisassumedherethatthechannelisknownperfectlyatthereceiverforallsystems.WerunthesimulationoverarangeofEb/NopointstogenerateBERresultsthatallowustocomparethedifferentsystems.

Westartbydefiningsomecommonsimulationparameters

frmLen=100;%framelength

numPackets=1000;%numberofpackets

EbNo=0:

2:

20;%Eb/Novaryingto20dB

N=2;%maximumnumberofTxantennas

M=2;%maximumnumberofRxantennas

andsetupthesimulation.

%Seedstatesforrepeatability

seed=[9876512345];randn('state',seed

(1));rand('state',seed

(2));

%CreateBPSKmod-demodobjects

P=2;%modulationorder

bpskmod=modem.pskmod('M',P,'SymbolOrder','Gray');

bpskdemod=modem.pskdemod(bpskmod);

%Pre-allocatevariablesforspeed

tx2=zeros(frmLen,N);H=zeros(frmLen,N,M);

r21=zeros(frmLen,1);r12=zeros(frmLen,2);

z21=zeros(frmLen,1);z21_1=zeros(frmLen/N,1);z21_2=z21_1;

z12=zeros(frmLen,M);

error11=zeros(1,numPackets);BER11=zeros(1,length(EbNo));

error21=error11;BER21=BER11;error12=error11;BER12=BER11;BERthy2=BER11;

%SetupafigureforvisualizingBERresults

h=gcf;gridon;holdon;

set(gca,'yscale','log','xlim',[EbNo

(1),EbNo(end)],'ylim',[1e-51]);

xlabel('Eb/No(dB)');ylabel('BER');set(h,'NumberTitle','off');

set(h,'renderer','zbuffer');set(h,'Name','Transmitvs.ReceiveDiversity');

title('Transmitvs.ReceiveDiversity');

%LoopoverseveralEbNopoints

foridx=1:

length(EbNo)

%Loopoverthenumberofpackets

forpacketIdx=1:

numPackets

data=randint(frmLen,1,P);%datavectorperuserperchannel

tx=modulate(bpskmod,data);%BPSKmodulation

%AlamoutiSpace-TimeBlockEncoder,G2,fullrate

%G2=[s1s2;-s2*s1*]

s1=tx(1:

N:

end);s2=tx(2:

N:

end);

tx2(1:

N:

end,:

)=[s1s2];

tx2(2:

N:

end,:

)=[-conj(s2)conj(s1)];

%CreatetheRayleighdistributedchannelresponsematrix

%fortwotransmitandtworeceiveantennas

H(1:

N:

end,:

:

)=(randn(frmLen/2,N,M)+...

j*randn(frmLen/2,N,M))/sqrt

(2);

%assumeheldconstantfor2symbolperiods

H(2:

N:

end,:

:

)=H(1:

N:

end,:

:

);

%Receivedsignals

%foruncoded1x1system

r11=awgn(H(:

1,1).*tx,EbNo(idx));

%forG2-coded2x1system-withnormalizedTxpower,i.e.,the

%totaltransmittedpowerisassumedconstant

r21=awgn(sum(H(:

:

1).*tx2,2)/sqrt(N),EbNo(idx));

%forMaximal-ratiocombined1x2system

fori=1:

M

r12(:

i)=awgn(H(:

1,i).*tx,EbNo(idx));

end

%Front-endCombiners-assumechannelresponseknownatRx

%forG2-coded2x1system

hidx=1:

N:

length(H);

z21_1=r21(1:

N:

end).*conj(H(hidx,1,1))+...

conj(r21(2:

N:

end)).*H(hidx,2,1);

z21_2=r21(1:

N:

end).*conj(H(hidx,2,1))-...

conj(r21(2:

N:

end)).*H(hidx,1,1);

z21(1:

N:

end)=z21_1;z21(2:

N:

end)=z21_2;

%forMaximal-ratiocombined1x2system

fori=1:

M

z12(:

i)=r12(:

i).*conj(H(:

1,i));

end

%MLDetector(minimumEuclideandistance)

demod11=demodulate(bpskdemod,r11.*conj(H(:

1,1)));

demod21=demodulate(bpskdemod,z21);

demod12=demodulate(bpskdemod,sum(z12,2));

%Determineerrors

error11(packetIdx)=biterr(demod11,data);

error21(packetIdx)=biterr(demod21,data);

error12(packetIdx)=biterr(demod12,data);

end%endofFORloopfornumPackets

%CalculateBERforcurrentidx

%foruncoded1x1system

BER11(idx)=sum(error11)/(numPackets*frmLen);

%forG2coded2x1system

BER21(idx)=sum(error21)/(numPackets*frmLen);

%forMaximal-ratiocombined1x2system

BER12(idx)=sum(error12)/(numPackets*frmLen);

%fortheoreticalperformanceofsecond-orderdiversity

BERthy2(idx)=berfading(EbNo(idx),'psk',2,2);

%Plotresults

semilogy(EbNo(1:

idx),BER11(1:

idx),'r*',...

EbNo(1:

idx),BER21(1:

idx),'go',...

EbNo(1:

idx),BER12(1:

idx),'bs',...

EbNo(1:

idx),BERthy2(1:

idx),'m');

legend('NoDiversity(1Tx,1Rx)','Alamouti(2Tx,1Rx)',...

'Maximal-RatioCombining(1Tx,2Rx)',...

'Theoretical2nd-OrderDiversity');

drawnow;

end%endofforloopforEbNo

%Performcurvefittingandreplottheresults

fitBER11=berfit(EbNo,BER11);

fitBER21=berfit(EbNo,BER21);

fitBER12=berfit(EbNo,BER12);

semilogy(EbNo,fitBER11,'r',EbNo,fitBER21,'g',EbNo,fitBER12,'b');

holdoff;

Thetransmitdiversitysystemhasacomputationcomplexityverysimilartothatofthereceivediversitysystem.

Theresultingsimulationresultsshowthatusingtwotransmitantennasandonereceiveantennaprovidesthesamediversityorderasthemaximal-ratiocombined(MRC)systemofonetransmitantennaandtworeceiveantennas.

Alsoobservethattransmitdiversityhasa3dBdisadvantagewhencomparedtoMRCreceivediversity.Thisisbecausewemodelledthetotaltransmittedpowertobethesameinbothcases.Ifwecalibratethetransmittedpowersuchthatthereceivedpowerforthesetwocasesisthesame,thentheperformancewouldbeidentical.Thetheoreticalperformanceofsecond-orderdiversitylinkmatchesthetransmitdiversitysystemasitnormalizesthetotalpoweracrossallthediversitybranches.

Theaccompanyingfunctionalscripts,MRC1M.mandOSTBC2M.maidfurtherexplorationfortheinterestedusers.

PART2:

Space-TimeBlockCodingwithChannelEstimation

Buildingonthetheoryoforthogonaldesigns,Tarokhetal.[2]generalizedAlamouti'stransmitdiversityschemetoanarbitrarynumberoftransmitterantennas,leadingtotheconceptofSpace-TimeBlockCodes.Forcomplexsignalconstellations,theyshowedthatAlamouti'sschemeistheonlyfull-rateschemefortwotransmitantennas.

Inthissection,westudytheperformanceofsuchaschemewithtworeceiveantennas(i.e.,a2x2system)withandwithoutchannelestimation.Intherealisticscenariowherethechannelstateinformationisnotknownatthereceiver,thishastobeextractedfromthereceivedsignal.Weassumethatthechannelestimatorperformsthisusingorthogonalpilotsignalsthatareprependedtoeverypacket[3].Itisassumedthatthechannelremainsunchangedforthelengthofthepacket(i.e.,itundergoesslowfading).

Asimulationsimilartotheonedescribedintheprevioussectionisemployedhere,whichleadsustoestimatetheBERperformanceforaspace-timeblockcodedsystemusingtwotransmitandtworeceiveantennas.

Againwestartbydefiningthecommonsimulationparameters

frmLen=100;%framelength

maxNumErrs=300;%maximumnumberoferrors

maxNumPackets=3000;%maximumnumberofpackets

EbNo=0:

2:

12;%Eb/Novaryingto12dB

N=2;%numberofTxantennas

M=2;%numberofRxantennas

pLen=8;%numberofpilotsymbolsperframe

W=hadamard(pLen);

pilots=W(:

1:

N);%orthogonalsetpertransmitantenna

andsetupthesimulation.

%Seedstatesforrepeatability

seed=[9876512345];randn('state',seed

(1));rand('state',seed

(2));

%Pre-allocatevariablesforspeed

tx2=zeros(frmLen,N);r=zeros(pLen+frmLen,M);

H=zeros(pLen+frmLen,N,M);H_e=zeros(frmLen,N,M);

z_e=zeros(frmLen,M);z1_e=zeros(frmLen/N,M);z2_e=z1_e;

z=z_e;z1=z1_e;z2=z2_e;

BER22_e=zeros(1,length(EbNo));BER22=BER22_e;

%SetupafigureforvisualizingBERresults

clf(h);gridon;holdon;

set(gca,'yscale','log','xlim',[EbNo

(1),EbNo(end

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2