数字电子技术电路课程设计.docx

上传人:b****3 文档编号:6072505 上传时间:2023-05-09 格式:DOCX 页数:10 大小:468.59KB
下载 相关 举报
数字电子技术电路课程设计.docx_第1页
第1页 / 共10页
数字电子技术电路课程设计.docx_第2页
第2页 / 共10页
数字电子技术电路课程设计.docx_第3页
第3页 / 共10页
数字电子技术电路课程设计.docx_第4页
第4页 / 共10页
数字电子技术电路课程设计.docx_第5页
第5页 / 共10页
数字电子技术电路课程设计.docx_第6页
第6页 / 共10页
数字电子技术电路课程设计.docx_第7页
第7页 / 共10页
数字电子技术电路课程设计.docx_第8页
第8页 / 共10页
数字电子技术电路课程设计.docx_第9页
第9页 / 共10页
数字电子技术电路课程设计.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

数字电子技术电路课程设计.docx

《数字电子技术电路课程设计.docx》由会员分享,可在线阅读,更多相关《数字电子技术电路课程设计.docx(10页珍藏版)》请在冰点文库上搜索。

数字电子技术电路课程设计.docx

数字电子技术电路课程设计

数字电子技术电路课程设计

 

题目:

数字时钟说明书

所在学院:

信息工程学院

专业:

通信工程

班级:

16--1

授课教师:

小组成员:

时间:

2014-6-10

 

数字时钟说明书

 

数字钟是一种用数字电子技术实现时,分,秒计时的装置,具有较高的准确性和直观性等各方面的优势,而得到广泛的应用。

此次设计数字电子钟是为了了解数字钟的原理,在设计数字电子钟的过程中,用数字电子技术的理论和制作实践相结合,进一步加深数字电子技术课程知识的理解和应用,同时学会使用Multisim电子设计软件。

一、设计目的

1.熟悉集成电路的引脚安排.

2.掌握各芯片的逻辑功能及使用方法.

3.了解面包板结构及其接线方法.

4.了解数字钟的组成及工作原理.

5.熟悉数字钟的设计与制作.

二、设计要求

1.显示时,分,秒,用24小时制

2.能够进行校时,可以对数字钟进行调时间

1.设计指标

时间以24小时为一个周期;

显示时,分,秒;

有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;

为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号.

画出电路原理图(或仿真电路图);

判断元器件及参数选择;

电路仿真与调试;

PCB文件生成与打印输出.

3.制作要求自行装配和调试,并能发现问题和解决问题.

4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会.

1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.通常使用石英晶体振荡器电路构成数字钟.图3-1所示为数字钟的一般构成框图.

1.秒脉冲发生器

脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器发出的脉冲经过整形、分频获得1Hz的秒脉冲。

如晶振为32768Hz,通过15次二分频后可获得1Hz的脉冲输出.

2.计数译码显示

秒、分、时、日分别为60、60、24、7进制计数器、秒、分均为60进制,即显示00~59,它们的个位为十进制,十位为六进制。

时为二十四进制计数器,显示为00~23,个位仍为十进制,而十位为三进制,但当十进位计到2,而个位计到4时清零,就为二十四进制了。

⑴晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定.不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路.

⑵分频器电路

分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数.分频器实际上也就是计数器.

⑶时间计数器电路

时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器,分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器.

⑷译码驱动电路

译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流.

⑸数码管

数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管.

2.数字钟的工作原理

1)晶体振荡器电路

晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定.

晶体XTAL的频率选为32768HZ.该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数.当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施.

由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为1.8KΩ.较高的反馈电阻有利于提高振荡频率的稳定性.

2)分频器电路

通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频.

通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现.例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(215),即实现该分频功能的计数器相当于15极2进制计数器.常用的2进制计数器有74HC393等.

3)6进制计数器转换电路

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连.

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换.利用1片74HC390实现12进制计数功能的电路如图3-6所示.

4)译码驱动及显示单元

计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路.

5)校时电源电路

当重新接通电源或走时出现误差时都需要对时间进行校正.通常,校正时间的方法是:

首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.

根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中.图3-7所示即为带有基本RS触发器的校时电路,

1.实验中所需的器材

5V电源.

面包板1块.

示波器.

万用表.

镊子1把.

剪刀1把.

网络线2米/人.

共阴八段数码管6个.

HD74LS48P芯片6个.

HD74LS90P芯片6个.

HD74LS08P芯片2个.

555芯片一个.

1.8KΩ电阻一个.

 

设计图为:

面包板内部结构图

 

面包板右边一列上五组竖的相通,下五组竖的相通,面包板的左边上下分四组,每组中X,Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之间不相通.

个功能块电路图

一个CD4511和一个LED数码管连接成一个CD4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,见附图5-1.

利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,

总接线元件布局简图,见附图6-1

芯片连接图见附图7-1

八,总结

设计过程中遇到的问题及其解决方法.

在检测面包板状况的过程中,出现本该相通的地方却未通的状况,后经检验发现是由于万用表笔尖未与面包板内部垂直接触所至.

在检测CD4511驱动电路的过程中发现数码管不能正常显示的状况,经检验发现主要是由于接触不良的问题,其中包括线的接触不良和芯片的接触不良,在实验过程中,数码管有几段二极管时隐时现,有时会消失.用5V电源对数码管进行检测,一端接地,另一端接触每一段二极管,发现二极管能正常显示的,再用万用表欧姆档检测每一根线是否接触良好,在检测过程中发现有几根线有时能接通,有时不能接通,把接触不好的线重新接过后发现能正常显示了.其次是由于芯片接触不良的问题,用万用表欧姆档检测有几个引脚本该相通的地方却未通,而检测的导线状况良好,其解决方法为把CD4511的芯片拔出,根据面包板孔的的状况重新调整其引脚,使其正对于孔,再用力均匀地将芯片插入面包板中,此后发现能正常显示,本次实验中还发现一块坏的LED数码管和两块坏的CD4511,经更换后均能正常显示.

在连接晶振的过程中,晶振无法起振.在排除线与芯片的接触不良问题后重新对照电路图,发现是由于12脚未接地所至.

在连接六进制的过程中,发现电路只能4,5的跳动,后经发现是由于接到与非门的引脚接错一根所至,经纠正后能正常显示.

在连接校正电路的过程中,出现时和分都能正常校正时,但秒却受到影响,特别时一较分钟的时候秒乱跳,而不校时的时候,秒从40跳到59,然后又跳回40,分和秒之间无进位,电路在时,分,秒进位过程中能正常显示,故可排除芯片和连线的接触不良的问题.经检查,校正电路的连线没有错误,后用万用表的直流电压档带电检测秒十位的QA,QB,QC和QD脚,发现QA脚时有电压时而无电压,再检测秒到分和分到时的进位端,发现是由于秒到分的进位未拔掉所至.

在制作报时电路的过程中,发现蜂鸣器在57分59秒的时候就开始报时,后经检测电路发现是由于把74HC30芯片当16引脚的芯片来接,以至接线都错位,重新接线后能正常报时.

连接分频电路时,把时个位的QD和时十位的1脚断开,然后时十位的1脚接到晶振的3脚,时十位的3脚接到秒个位的1脚,所连接的电路图无法正常工作,时十位从0-9的跳,时个位只能显示一个0,在这个电路中3脚的分频用到两次,故无法正常显示,因此要把12进制接到74HC390的一个逻辑电路空出来用于分频即可,因此把时十位的CD4511的12,6脚接地,7脚改为接74HC390的5脚,74HC390的3,4脚断开,然后4脚接9脚即可,其中空出的74HC390的3脚就可用于2Hz的分频,分频后变为1Hz,整个电路也到此为正常的数字钟计数.

2.设计体会

在此次的数字钟设计过程中,更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法.

在连接六进制,十进制,六十进制的进位及十二进制的接法中,要求熟悉逻辑电路及其芯片各引脚的功能,那么在电路出错时便能准确地找出错误所在并及时纠正了.

在设计电路中,往往是先仿真后连接实物图,但有时候仿真和电路连接并不是完全一致的,例如仿真的连接示意图中,往往没有接高电平的16脚或14脚以及接低电平的7脚或8脚,因此在实际的电路连接中往往容易遗漏.又例如74HC390芯片,其本身就是一个十进制计数器,在仿真电路中必须连接反馈线才能正常显示,而在实际电路中无需再连接,因此仿真图和电路连接图还是有一定区别的.

在设计电路的连接图中出错的主要原因都是接线和芯片的接触不良以及接线的错误所引起的.

3.对该设计的建议

此次的数字钟设计重在于仿真和接线,虽然能把电路图接出来,并能正常显示,但对于电路本身的原理并不是十分熟悉.总的来说,通过这次的设计实验更进一步地增强了实验的动手能力.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2