电动汽车控制系统设计毕业设计论文.docx

上传人:聆听****声音 文档编号:610340 上传时间:2023-04-29 格式:DOCX 页数:38 大小:253.54KB
下载 相关 举报
电动汽车控制系统设计毕业设计论文.docx_第1页
第1页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第2页
第2页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第3页
第3页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第4页
第4页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第5页
第5页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第6页
第6页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第7页
第7页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第8页
第8页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第9页
第9页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第10页
第10页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第11页
第11页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第12页
第12页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第13页
第13页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第14页
第14页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第15页
第15页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第16页
第16页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第17页
第17页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第18页
第18页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第19页
第19页 / 共38页
电动汽车控制系统设计毕业设计论文.docx_第20页
第20页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

电动汽车控制系统设计毕业设计论文.docx

《电动汽车控制系统设计毕业设计论文.docx》由会员分享,可在线阅读,更多相关《电动汽车控制系统设计毕业设计论文.docx(38页珍藏版)》请在冰点文库上搜索。

电动汽车控制系统设计毕业设计论文.docx

摘要

在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。

本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。

以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。

主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。

在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。

功率模块采用多MOSFET并联的方式,有效的节约了成本。

电源模块采用基于UC3842的开关电源电路。

选用IR公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。

对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。

驱动系统的软件设计中,主要实现的功能为:

开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。

针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。

他励直流电动机驱动系统能够很好的运行在电动汽车上,性能可靠、结构简

单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。

关键词:

电动汽车,ATmega64,他励直流电机,PID模糊控制

38

目录

摘要 1

第一章绪论

1.1纯电动汽车在国内的发展状况 3

1.2国外电动汽车发展现状 3

1.3本课题的任务和主要工作 4

第二章他励电动机的控制理论基础

2.1他励直流电动机的调速与制动 5

2.1.1直流电动机电枢电动势和电磁转矩 5

2.1.2他励直流电动机的机械特性 6

第三章系统的硬件设计

3.1系统硬件的整体设计方案 10

3.2主控制器MCU的介绍 10

3.2.1MCU的选择 10

3.2.2ATmega64的特性与内部结构 11

3.3开关电源模块 12

3.4电流检测模块 13

3.5驱动电路的设计 16

3.6电压检测电路 17

3.7温度检测电路 18

3.8加减速踏板信号检测电路 19

3.9开关量输入信号 20

3.10蜂鸣器报警电路 20

3.11通讯模块电路设计 21

3.12硬件抗干扰的设计 22

3.13本章小结 23

第四章系统的软件设计

4.1电动汽车的控制策略研究 24

4.1.1再生制动控制策略 24

4.1.2驱动控制策略 24

4.2主要任务模块的详细设计 26

4.2.1主程序 26

4.2.2励磁、电枢PWM控制模块 27

4.2.3电动机速度测量 28

4.3本章小结 29

第五章总结 30

参考文献 31

第一章绪论

1.1纯电动汽车在国内的发展状况

与世界其他国家一样,电动汽车研发工作在我国也正在如火如荼的进行着:

“十五”期间,国家从维护我国能源安全、改善大气环境、提高汽车工业竞争力、实现我国汽车工业的跨越式发展的战略高度考虑,设立“电动汽车重大科技专项’’,通过组织企业、高等院校和科研机构,集中国家、地方、企业、高校、科研院所等方面的力量进行联合攻关。

为此,从2001年10月起,国家共计拨款8.8亿元作为这一重大科技专项的经费【1】。

我国电动汽车重大科技专项实施4年来,经过200多家企业、高校和科研院所的2000多名技术骨干的努力,目前已取得重要进展:

燃料电池汽车已经成功开发出性能样车,燃料电池轿车累计运行4000km,燃料电池客车累计运行8000km:

混合动力客车已在武汉等地公交线路上试验运行超过140000km:

纯电动轿车和纯电动客车均已通过国家有关认证试验。

国内主要汽车制造商对纯电动汽车的开发和研制也投入了相当的人力和物力,并取得了一定的成果。

北京奥运会期间,奇瑞、长安、东风、一汽、京华及福田等汽车生产企业联合清华大学、北京理工大学等单位,向社会提供了自主研发的55辆纯电动锂电池汽车、25辆混合动力客车、75辆混合动力轿车、20辆燃料电池轿车,以及400辆纯电动场地车等各种新能源汽车为奥运会服务。

奥运会后,科技部还将计划连续3年在国内10个以上有条件的大中城市开展千辆级混合动力汽车、纯电动汽车和燃料电池汽车、以及提供基础设施的大规模示范,到2010年底节能与新能源汽车达到1万辆。

最近,比亚迪公司新推出一款商业化的电动汽车比亚迪e6,为我国电动汽车产业做出了重大贡献。

1.2国外电动汽车发展现状

近二十多年来,西方工业发达国家把电动汽车的研究开发看是作解决环境问题和能源问题的一种有效手段。

美国政府动员全美所有科研机构进行电动汽车(Electricvehicle,简称EV)的研究,在1991年,美国通用汽车公司、福特汽车公司、克莱斯勒汽车公司共同协议,成立了“先进电池联合体”(USABC),共同研发新一代电动汽车所需要的高性能电池。

为实现新的节能车而能保持现有汽车的价格和性能,美国先后推出了PNGV、FreedomCAR、AVP计划。

法国政府推出“PREDITm--2002/2006"计划,并给购买EV的用户提供5000法郎的补贴。

德国政府同9个主要公司签订了一份理解备忘录,为创建一个清洁能源城市(柏林)而结成同盟。

英国、意大利等欧洲国家都在开展电动汽车的研发工作。

而日本政府更是特别重视电动汽车的研究和开发。

1998年日本东京电力公司联合日本电池公司,共同开发了“ZA一牌电动汽车,该电动汽

车采用了高新技术,使其具有当时EV的世界最高水平。

而丰田汽车公司在1996年就已成功地研制出燃料电池汽车的生产样车,并先于其他汽车厂家在1997年开始批量生产混合动力电池汽车,成为环保技术领域和世界电动汽车产业化的领头羊。

以上各国政府在大力扶持大型汽车集团的同时,纷纷通过制定环保和节能法规,采取投资、税收优惠、政府补贴促进消费的政策,旨在抢占电动汽车产业制高点。

代表着当代EV先进水平的福特汽车公司的Think、通用汽车公司的Impact、丰田汽车公司的E.corn、Prius电动汽车、本田公司的Civic电动汽车正是这种竞争的产物。

1.3本课题的任务和主要工作

本文在广泛查阅相关文献的基础上,设计基于ATmega64的他励电机电动汽车控制系统。

本文的主要工作归纳为以下几点:

1.介绍了他励电动机的控制理论基础与调速系统的仿真,为后章系统硬件与软件的设计做好了准备。

2.讨论系统的硬件设计。

详细讨论了开关电源模块电路、电流检测电路、串口通信电路、驱动电路、及抗干扰电路的设计。

3.讨论系统的软件设计。

设计系统的程序整体框架、各任务模块程序、中断服务程序和抗干扰程序。

4.进行系统调试与实验。

系统设计完成后进行硬件调试和软件调试,搭建实验平台,记录实验数据及图表,进行实验分析。

第二章他励电动机的控制理论基础

2.1他励直流电动机的调速与制动

为了满足各种生产机械对负载转矩特性的要求,在实际应用中需通过设法改变电动机的各种控制参数来达到所需的人为机械特性。

由于他励直流电动机的可控参数多,易实现所需要的人为机械特性,所以在直流调速中较多地采用他励直流电动机,电动汽车中一般也是选用他励直流电动机作为直流驱动电动机。

因此,需要给出直流电动机电枢电动势和电磁转矩的两个数学公式,从而导出他励直流电动机的机械特性数学方程式,即电动机的电磁转矩和转速之间的函数关系式n=f(t),然后才能说明如何改变方程式中的相关参数来获得所需人为机械特性。

2.1.1直流电动机电枢电动势和电磁转矩

1)电枢电动势。

电枢电动势是指直流电动机正常工作时,电枢绕组切割气隙磁通所产生的电动势。

无论是发电机还是电动机,只要电枢旋转切割磁通就有电枢电动势。

根据前述直流电动机的结构原理可导出直流电动机电枢电动势Ea为:

(2.1)

式(2.1)中P ——电动机极对数;

N——电枢绕组总的导体数;a——电枢绕组的支路对数;φ——电动机每极磁通(Wb);

n——电动机转速(r/min);c(e)——电动势常数。

2)电磁转矩。

电磁转矩是指直流电动机的电枢绕组流过电流时,这些载流导体在磁场中所受力而形成的总转矩。

同样按直流电动机的结构原理可推得直流电动机的电磁转矩T为:

(2.2)

式(2.2)中I (a)——电枢电流(A);

C(t)——转矩常数。

电动势常数C(e)和转矩常数C(t)都是决定于电动机结构的数据,对于一台已制的电动机C(e)和C(T)都是恒定不变的常数,并且从式(2.1)和式(2.2)可知两者之间的关系为:

2.1.2他励直流电动机的机械特性

得出他励直流电动机的机械特性数学方程式:

(2.3)

式(2.3)中R(a)——电枢绕组内电阻;

R (c)——电枢外串联电阻;

n(0) ——理想空载转速;

β ——机械特性斜率

其中, 2.1.3他励直流电动机的调速

通过对他励直流电动机的机械特性数学方程式(2.3)的分析,可知改变其中U、φ、R(c)三个参数即可改变其转速n。

因此相应的调速方法也要降压、弱磁、串电阻三种:

降压调速是改变电源电压U来获得恒转矩调速;弱磁调速是通过改变励磁电流I(f),从而改变电动机磁通量Φ来获得恒功率调速;串电阻调速是通过逐级改变电枢回路中所串电阻R(c)来进行调速,它使机械特性变软,并增加了功耗,所以目前很少采用,主要用在大电动机的起动过程,即通过逐级减小电枢回路中所串电阻来减小起动电流。

而前两种调速方法目前用得较多,并也是电动

汽车中需配合采用的方法,现分别具体介绍如下:

(1)降低电源电压的恒转矩调速

保持他励直流电动机的磁通为额定值,电枢回路不串电阻,若将电源电压分别降低为U1、U2、U3等不同数值时,则可获得与固有机械特性平行的人为机械特性,如图2.1所示。

图中所示的负载为恒转矩负载,在电源电压为额定值U(e)时,其工作点为e,电动机为额定转速n(e);当电压降低到U1时,工作点为A,转速为n(a);电压为U2时,工作点为B,转速为n(b)等。

即转速随电源电压降低,调速方向是从基数(额定转速N(e))向下调节,并且电源电压为不同值时,其机械特性的斜率都与固有机械特性斜率相等,即特性较硬。

通常电源电压不超过额定值,即采用连续降低电源电压来实现恒转矩无级调速,以获得如图2.3所示的从基速到零速段的调速控制。

(2)减弱磁通的恒功率调速

由于通常电动机额定运行时均已在磁通近饱和状态,故一般只能采用减弱磁通量的方法来调速。

保持他励直流电动机电源为额定值,电枢回路不串联电阻,通过减小电动机的励磁电流I(f),即减弱电动机磁通Φ时,其机械特性方程式为:

(2.4)

从式(2.4)中可看出n(0)随φ的减弱成反比例增加,而△n随φ的二次方成反比地增加,若将近饱和额定磁通φ(e)的比例定为l,减弱后其比例也就小于l,平方后其比例是减小,因此n(0)比△n增加得快,即减弱磁通φ后电动机的转速n将升高,调速方向是从基速(额定转速n(e))向上调节。

’弱磁调速的机械特性如图2.2所示。

设电动机拖动恒转矩负载互运行于固有机械特性e点上,转速为n(e)。

当磁通从φ(e)降到φ

(1)时,转速n未能及时变化,而电枢电动势E(a)=c(e)φn(e),则因φ下降而减小,使电枢

电流I(a)=(U-E(a))/R(a)增大。

由于R(a)较小,E(a)稍有减小就能使I(a)增加很多,此时虽然φ减小了,但它减小的幅度小于I(a)增加的幅度,所以电磁转矩T=c(t)φI(a)还是增大了。

增大后的电磁转矩即为图4-9中的T’,工作点由e点过渡到φ=φ1的人为机械特性曲线上的C点。

由于T>T(L),转速n上升,E(a)随之增大,I(a)及T也跟着下降,当T下降到T=T(L)时,又建立新的转矩平衡,电动机转速升至n(a)稳定运行于A点。

在弱磁调速中,电枢电压U为额定电压U(e),若保持电枢电流I(a)为额定电流I(e)不变时,则输出转矩T=C(T)φI(e),代人式(2.3)即可得变化磁通φ与转速n的关系式:

(2.5)

式(2.5)中C1——常数1;于是电磁转矩可表示为,

(2.6)

式(2.6)中C2——常数,C2=C1C(T)I(e)。

带入电动机输出的功率公式有

该式说明了弱磁调速时电动机允许输出功率为常数,与转速无关;允许输出转矩与转速成反比变化,即属恒功率调速方式。

由于励磁电流一般较小,因此弱磁调速控制较方便、功耗也小,通过连续调节励磁电源的电压,即可实现无级的弱磁恒功率调速,以获得如图2.3所示的低速恒转矩、高速恒功率的调速特性。

他励直流电动机弱磁升速能达到的最高转速,受电动机换向条件和机械强度的限制,一般他励直流电动机的最高转速只能升到额定转速n(e)的1.2~2倍,对于特制的调速电动机才可升到ne的3~4倍。

在此需特别注意的是励磁电流I(f),在运行中绝对不能为0,否则φ趋近于0,n趋近于无穷即将产生飞车,因此必须采取相应的互锁保护措施。

为满足电动汽车行驶时能有较宽的速度要求,可把降低电枢电压和减弱磁通两种调速方法合起来实用,以获得低速恒转矩、高速恒功率的调速特性。

【7-9】

第三章系统的硬件设计

本章主要介绍了他励直流电机电动汽车控制器的硬件设计,其中包括了控制器整体电路模块的设计、电源模块设计、驱动模块设计、电流检测模块设计和通信模块设计等。

下面做具体的介绍。

3.1系统硬件的整体设计方案

本电动汽车动力系统是基于他励直流电机设计的,控制器的硬件设计既要达到动力性能要求,也要达到便捷的操控性要求。

根据第二章对他励直流电机调速系统提出的性能要求结合电动汽车的操控性要求,设计了如图3.1所示的硬件系统。

本控制系统包括对电枢和励磁的分别PWM控制模块,电源模块,开关量处理模块,和模拟量处理模块,硬件性能满足设计要求,可在此硬件系统上对MCU进行软件设计,从而达到最终的控制要求。

3.2主控制器MCU的介绍

3.2.1MCU的选择

MCU是整个系统的控制核心,实现对数据的处理、存储和通讯等功能。

选择一款合适的控制器对整个系统起着至关重要的作用。

对于明确应用对象的系统,选择功能过少的控制器,难于完成控制任务,外围器件的扩展也会使系统的硬件结构笨重复杂从而使精确度降低。

选择功能过强的控制器,则会造成资源浪费,使产品的性能价格比下降。

目前,市面上的控制器不仅种类繁多,而且在性能方面也各有不同。

考虑到单片机结构简单容易上手且系统对速度要求不高,因此本系统选用一款高性价比的单片机充当MCU。

在实际应用中,选择单片机时应考虑以下几点:

【5】

(1)单片机的基本性能参数,例如指令执行速度,程序存储器容量,中

断能力及可用I/O口引脚数量等。

(2)单片机的增强功能,例如看门狗,A/D功能,双串口,RTC(实时时钟),EEPROM,CAN接口等。

(3)单片机的存储介质,对于程序存储器来说,Flash存储器和OTP(一次性可编程)存储器相比较,最好是选择Flash存储器。

(4)芯片的封装形式,如DIP封装,PLCC封装及表面贴附封装等。

(5)芯片工作温度范围符合工业级、军品级还是商业级,如果设计户外

产品,必须选用工业级芯片。

(6)单片机的工作电压是否在常用范围内。

(7)单片机的抗干扰性能。

(8)编程器以及仿真器的价格,单片机开发是否支持高级语言以及编程环境要好用易学。

(9)供货渠道是否畅通,价格是否低廉,是否具有良好的技术服务支持。

根据上面所述的原则,结合本系统实际情况,仪表选用ATMEL公司生

产的ATmega64单片机作为主控模块的核心芯片

3.2.2ATmega64的特性与内部结构

ATmega64是ATMEL公司生产的高性能、低功耗的8位AVR高档微处理器,采用RISC结构,具备IMIPS/MHz(百万条指令每秒/兆赫兹)的高速处理能力,有效缓减了系统在功耗和处理速度之间的矛盾。

它可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。

其主要特点和优点如下:

【6】

(1)自带廉价的程序存储器(FLASH)和非易失的数据存储器(EEPROM)。

这些存储器可可擦写1000次以上,新工艺AVR器件,程序存储器擦写可达1万次以上,基本不再会有报废品产生。

这样使程序开发更加方便,工作更可靠。

(2)高速度,低功耗。

在和M51单片机外接相同晶振条件下,AVR单片机的工作速度是M51单片机的30--一40倍;并且增加了休眠功能及低功率、非挥发的CMOS工艺,一般耗电在1~2.5mA,典型功耗情况,WDT关闭时为100hA,其功耗远低于M51单片机,更适用于电池供电的应用设备。

(3)工业级产品。

具有大电流输出可直接驱动SSR和继电器,内有看门狗定时器,防止程序跑飞,从而提高了产品的抗干扰能力。

工作电压范围宽(2.7"-6.ov),电源抗干扰性强。

I/O口功能强、驱动能力大。

AVR的I

/O口是真正的I/O口,能正确反映I/O口输入/输出的真实情况。

I/O口有输入/输出,三态高阻输入,也可设定内部拉高电阻作输入端的功能,便于作各种应用特性所需(多功能I/O口)。

(4)程序下载方便。

AVR程序写入可以并行写入(用万用编程器),也可用串行ISP(通过PC机RS232H或打印E1)在线编程擦写。

也就是说不需要将IC芯片拆下拿到万用编程器上擦写,可直接在电路板上进行程序修改、烧录等操作,方便产品升级。

(5)具有模拟比较器、脉宽调制器、模数转换功能。

AVR内带模拟比较器,I/O口可作A/D转换用,可组成廉价的A/D转换器。

使得工业控制中的模拟信号处理更为简单方便。

(6)强大的通讯功能。

内置了同步串行接HSH、通用串行接HUART、两线串行总线接HTWI(12C),使网络控制、数据传送更为方便。

(7)超级保密功能,应用程序可采用多重保护锁功能。

不可破解的位加密锁Lockbit技术,Flash保密位单元深藏于芯片内部,无法用电子显微镜看到保密位,可多次烧写的Flash且具有多重密码保护锁死(LOCK)功能,因此可快速完成产品商品化,并可多次更改程序(产品升级)而不必浪费IC芯片或电路板,大大提高产品质量及竞争力。

由上述内容可知,ATmega64的处理速度快且功耗低,内部自带的EPROM能够满足车辆运行曲线参数的存储,FOE]的推挽设计使抗干扰能力更加增强,在线仿真功能使得程序开发更加简单,两USARTD满足系统的需要(232和485),内部各种增强功能的设计使得控制器外设更加简单。

因此,本系统选用ATmega64作为主控制芯片。

3.3开关电源模块、

近年来,随着电源技术的飞速发展,开关稳压电源朝着高频化,集成化的方向发展,开关电源已经得到广泛的应用。

高频开关稳压电源与线性电源相比,具有如下优点1)效率高;2)体积小、重量轻;3)稳压范围广;4)性能灵活、驱动能力强;5)可靠性高,当开关损坏时,也不会有危及负载的高低压出现。

而传统的开关电源普遍采用电压型PWM技术。

电流型PWM是近年兴起的新技术,与电压型PWM相比,电流型PWM开关电源具有更好的电压和负载调整率,系统的稳定性和动态特性得以明显改善,特别是其内在的限流能力和并联均流能力可以使控制电路简单可靠。

目前,小功率开关电源正从电压控制模式向电流控制模式方向转化。

UC3842是高性能固定频率电流模式控制器专为离线和直流至直流变换器应用而设计,为设计人员提供只需要最少外部元件就能获得成本效益高

的解决方案。

此集成电路具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。

电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。

本文以UC3842为核心控制部件,设计了DC60V输入、DCl2V输出的单端反激式开关稳压电源。

开关电源控制电路是一个电压、电流双闭环PI控制系统。

主要的功能模块包括:

启动电路、反馈电路、保护电路、整流电路。

系统电源电路原理图如图3.3所示。

在电路设计中,利用UC3842控制芯片内部的误差放大器、由R1、R2构成的电压反馈电路,和R3、C1共同构成电压闭环PI调节器,利用芯片内部的比较器与由R5电流检测和R4、C2滤波电路构成的电流反馈电路构成电流闭环。

外接的定时电阻R(T)和定时电容C(T),决定系统的工作频率,f=1.8/R(T)C(T)。

系统中取R(T)为7.5KΩ,取C,为0.01uf。

系统的工作频率f=24KHz。

采用LM7905变换芯片产生-5V电源,给运放工作提供负电源。

3.4电流检测模块

在功率变换器中,经常要对流过主功率开关器件的电流进行检测,其目的主要有两个:

1)对功率变换器进行过流保护;2)作为功率变换器控制器的电流反馈检测量。

通常的做法是在功率变换器的直流母线上安装电流霍尔或电流互感器以提供电流反馈检测量。

由于流过主开关器件的电流通

常都较大,所采用的霍尔器件或电流互感器的额定参数也必须很大,不仅成本高、体积大、安装不方便,且不便于实现功率变换器的高功率密度。

文中介绍一种用半导体器件构成的电流检测电路,可以直接布置在功率变换器的控制器的印制板上,不仅成本低廉,体积小,安装方便,而且性能良好,还可以同功率变换器固化在一起形成专用集成电路(ASIC)。

3.4.1MOSFET电流检测原理

MOSFET的通态电阻具有正的温度系数,约为0.4%一0.8%,有利于采用多MOSFET管并联。

多只元件并联工作时,MOSFET间可以自动均流。

当MOSFET功率开关流过通态电流时,由于通态导通电阻的存在,在其导通沟道上有一定的压降,又因器件的导通沟道电阻基本稳定,该压降与器件的通态电流成正比。

所以,检测出主开关器件的通态压降也就是检测流过器件的电流大小。

即:

(3.1)

式(3.1)中,V(DSN)——OS开关的漏源通态压降;

R (D)——沟道等效电阻;Id——漏极电流。

3.4.2他励直流电机电流检测方法

他励直流电机控制器要采集的电流信号是电枢电流信号和励磁电流信号,电枢电流只有一相,励磁电流要采集的信号有两相,如图3.1硬件结构框图所示,电枢电流采集流过下桥MOSFET的电流,励磁采集流过H桥下桥MOSFET的电流。

因为原理都是一样的,故只分析采集电枢电流的电路。

由于电机所需功率比较大,所以每一项都是多个MOSFET管并联【251。

他励电机电枢电流检测电路

如图3.4所示。

电路工作原理:

Vlow驱动下桥MOSFET管,当Vlow为低电平时,D2右端也被钳位为低电平,U1的正向输入端即为低电平,U1的负向输入端为固定电平,此时U1输出为低电平,U2输出也为低电平,经过U3,正反输入端都为0,所以U3输出为0。

MCU电流采样点V04为O。

当Vlow为高电平时,D2右端电压为高电平,此时U1输出为高阻态,Vol的电压为MOSFET电流在内阻上的压降加上D1的管压降,因为加上了D1的管压降,所以检测的电流不准,故我们采用了U2来去除管压降,此时U2输出为高阻态,V02的电压为二极管管压降。

V03=K*(V01.V02);K=(R9/R8)为电压放大倍数;

V03经过C1和R10

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2