功率半导体器件基本原理第04章精.docx

上传人:b****4 文档编号:6140887 上传时间:2023-05-09 格式:DOCX 页数:41 大小:608.70KB
下载 相关 举报
功率半导体器件基本原理第04章精.docx_第1页
第1页 / 共41页
功率半导体器件基本原理第04章精.docx_第2页
第2页 / 共41页
功率半导体器件基本原理第04章精.docx_第3页
第3页 / 共41页
功率半导体器件基本原理第04章精.docx_第4页
第4页 / 共41页
功率半导体器件基本原理第04章精.docx_第5页
第5页 / 共41页
功率半导体器件基本原理第04章精.docx_第6页
第6页 / 共41页
功率半导体器件基本原理第04章精.docx_第7页
第7页 / 共41页
功率半导体器件基本原理第04章精.docx_第8页
第8页 / 共41页
功率半导体器件基本原理第04章精.docx_第9页
第9页 / 共41页
功率半导体器件基本原理第04章精.docx_第10页
第10页 / 共41页
功率半导体器件基本原理第04章精.docx_第11页
第11页 / 共41页
功率半导体器件基本原理第04章精.docx_第12页
第12页 / 共41页
功率半导体器件基本原理第04章精.docx_第13页
第13页 / 共41页
功率半导体器件基本原理第04章精.docx_第14页
第14页 / 共41页
功率半导体器件基本原理第04章精.docx_第15页
第15页 / 共41页
功率半导体器件基本原理第04章精.docx_第16页
第16页 / 共41页
功率半导体器件基本原理第04章精.docx_第17页
第17页 / 共41页
功率半导体器件基本原理第04章精.docx_第18页
第18页 / 共41页
功率半导体器件基本原理第04章精.docx_第19页
第19页 / 共41页
功率半导体器件基本原理第04章精.docx_第20页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

功率半导体器件基本原理第04章精.docx

《功率半导体器件基本原理第04章精.docx》由会员分享,可在线阅读,更多相关《功率半导体器件基本原理第04章精.docx(41页珍藏版)》请在冰点文库上搜索。

功率半导体器件基本原理第04章精.docx

功率半导体器件基本原理第04章精

Chapter4

SchottkyRectifiers

ASchottkyrectifierisformedbymakinganelectricallynonlinearcontactbetweenametalandthesemiconductordriftregion.TheSchottkyrectifierisanattractiveunipolardeviceforpowerelectronicapplicationsduetoitsrelativelylowon-statevoltagedropanditsfastswitchingbehavior.Ithasbeenwidelyusedinpowersupplycircuitswithlowoperatingvoltagesduetotheavailabilityofexcellentdevicesbaseduponsilicontechnology.Inthecaseofsilicon,themaximumbreakdownvoltageofSchottkyrectifiershasbeenlimitedbytheincreaseintheresistanceofthedriftregion.Commerciallyavailabledevicesaregenerallyratedatbreakdownvoltagesoflessthan100V.Novelsiliconstructuresthatutilizethecharge-couplingconcepthaveallowedextendingthebreakdownvoltagetothe200Vrange.1,2

ManyapplicationsdescribedinChap.1requirefastswitchingrectifierswithlowon-statevoltagedropthatcanalsosupportover500V.ThemuchlowerresistanceofthedriftregionforsiliconcarbideenablesdevelopmentofsuchSchottkyrectifierswithveryhighbreakdownvoltages.3Thesedevicesnotonlyofferfastswitchingspeedbutalsoeliminatethelargereverserecoverycurrentobservedinhigh-voltagesiliconP-i-Nrectifiers.ThisreducesswitchinglossesnotonlyintherectifierbutalsointheIGBTsusedwithinthepowercircuits.4

Inthischapter,thebasicstructureofthepowerSchottkyrectifierisfirstintroducedtodefineitsconstituentelements.Thischapterthenprovidesadiscussionofthebasicprinciplesofoperationofthemetal–semiconductorcontact.Thecurrenttransportmechanismsthatarepertinenttopowerdevicesareelucidatedforboththeforwardandreversemodeofoperation.Inthefirstquadrantofoperation,thethermionicemissionprocessisdominantforpowerSchottkyrectifiers.Inthethirdquadrantofoperation,theinfluenceofSchottkybarrierloweringhasastrongimpactontheleakagecurrentforsilicondevices.Inthecaseofsiliconcarbidedevices,theinfluenceoftunnelingcurrentmustalsobetakenintoaccountwhenperformingtheanalysisofthereverseleakagecurrent.

B.J.Baliga,FundamentalsofPowerSemiconductorDevices,doi:

10.1007/978-0-387-47314-7_4,

©SpringerScience+BusinessMedia,LLC2008

168FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

Thetradeoffbetweenreducingpowerdissipationintheon-stateandtheoff-stateforSchottkyrectifiersisalsoanalyzedinthischapter.Thistradeoffrequirestakingintoaccountthemaximumoperatingtemperaturefortheapplication.ThepowerdissipationintheSchottkyrectifierisshowntodependuponthebarrierheightaswellasthedutycycle.

4.1PowerSchottkyRectifierStructure

Thebasicone-dimensionalstructureofthemetal–semiconductororSchottkyrectifierstructureisshowninFig.4.1togetherwithelectricfieldprofileunderreversebiasoperation.Theappliedvoltageissupportedbythedriftregionwithatriangularelectricfielddistributionifthedriftregiondopingisuniform.Themaximumelectricfieldoccursatthemetalcontact.Thedeviceundergoesbreakdownwhenthisfieldbecomesequaltothecriticalelectricfieldforthesemiconductor.

Schottkyrectifierbythetransportofelectronsoverthemetal–semiconductorcontactandthroughthedriftregionaswellasthesubstrate.Theon-statevoltagedropisdeterminedbythevoltagedropacrossthemetal–semiconductorinterfaceandtheohmicvoltagedropintheresistanceofthedriftregion,thesubstrate,anditsohmiccontact.

Attypicalon-stateoperatingcurrentdensitylevels,thecurrenttransportisdominatedbymajoritycarriers.Consequently,thereisinsignificantminoritycarrierstoredchargewithinthedriftregioninthepowerSchottkyrectifier.ThisenablesswitchingtheSchottkyrectifierfromtheon-statetothereverse-blockingoff-stateinarapidmannerbyestablishingadepletionregionwithinthedrift

SchottkyRectifiers169

region.ThefastswitchingcapabilityoftheSchottkyrectifierenablesoperationathighfrequencieswithlowpowerlosses,makingthisdevicepopularforhighfrequencyswitch-modepowersupplyapplications.Withtheadventofhigh-voltageSchottkyrectifiersbaseduponsiliconcarbide,theyareexpectedtobeutilizedinmotorcontrolapplicationsaswell.

4.2Metal–SemiconductorContact

Nonlinearcurrenttransportacrossametal–semiconductorcontacthasbeenknownforalongtime.Thepotentialbarrierresponsibleforthisbehaviorwasascribedtothepresenceofastablespace-chargelayerbyWalterSchottkyin1938.Inthissection,theprinciplesfortheformationofarectifyingcontactbetweenametalandanN-typesemiconductorregionaredescribed.ThisenablesrelatingtheSchottkybarrierheightbetweenthemetalandthesemiconductortotheirfundamentalproperties.

TheenergybanddiagramforametalandanN-typesemiconductorisshowninFig.4.2whentheyareisolatedfromeachother.Ingeneral,thepositionoftheFermilevelinthemetalandthesemiconductorwillhavedifferentenergyvalues.Intheexampleshowninthefigure,theFermilevelinthesemiconductorliesabovetheFermilevelforthemetal.Theworkfunctionforthemetal(ΦM)isdefinedastheenergyrequiredtomoveanelectronfromtheFermilevelpositioninthemetal(EFM)toastateofrestinfreespaceoutsidethesurfaceofthemetal.Inthesamemanner,theworkfunctionforthesemiconductor(ΦS)isdefinedastheenergyrequiredtomoveanelectronfromtheFermilevelpositioninthesemiconductor(EFS)toastateofrestinfreespaceoutsidethesurfaceofthesemi-conductor.SincenoelectronsarelocatedattheFermilevelpositioninthesemiconductor,itisusefultodefineanelectronaffinityforthesemiconductor(χS)

170FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

astheenergyrequiredtomoveanelectronfromthebottomoftheconductionbandinthesemiconductor(EC)toastateofrestinfreespaceoutsidethesurfaceofthesemiconductor.Theworkfunctionandelectronaffinityforthesemiconductorarerelatedby

ΦS=χS+(EC−EFS).(4.1)

ThepotentialdifferencebetweentheFermilevelinthesemiconductorandtheFermilevelinthemetaliscalledthecontactpotential(VC)whichisgivenby

qVC=(EFS−EFM)=ΦM−ΦS=ΦM−(χS+EC−EFS).(4.2)

Whenanelectricalconnectionisprovidedbetweenthemetalandthesemiconductor,electronsaretransferredfromthesemiconductortothemetaldue

SchottkyRectifiers171

totheirgreaterenergyuntilthermalequilibriumisestablished.Thistransferofelectronscreatesanegativechargeinthemetalandapositivechargewithinadepletionregionformedatthesemiconductorsurface.TheresultingbandstructureisillustratedinFig.4.3forthecaseofaseparationdbetweenthemetalandthesemiconductorsurfaces.Whenthemetalandthesemiconductorsurfacesarebroughtintocontactbyreducingtheseparationdtozero,thebandstructureforthemetal–semiconductorcontactisobtainedasillustratedinFig.4.4.Theentirecontactpotentialisnowsupportedwithinthedepletionregionformedatthesurfaceofthesemiconductor.Thisvoltageisthereforealsoreferredtoasthebuilt-inpotential(Vbi)ofthemetal–semiconductorcontact.

TheSchottkybarrierheight(ΦBN)isrelatedtothebuilt-inpotentialby

ΦBN=qVbi+(EC−EFS).

ΦBN=ΦM−χS,(4.3)AnotherusefulrelationshipforobtainingtheSchottkybarrierheightis(4.4)

becausethesepropertiesforthematerialsareknown.Thebuilt-inpotentialcreatesazero-biasdepletionregionwithinthesemiconductorwhosewidthisgivenby

W0=

4.3ForwardConduction(4.5)

Currentflowacrossthemetal–semiconductorjunctioncanbeproducedbytheapplicationofanegativebiastotheN-typesemiconductorregion.ThisproducesashiftintheenergybandstructureasillustratedinFig.4.5.Currentflowacrosstheinterfacethenoccursmainlyduetomajoritycarriers–electronsforthecaseofanN-typesemiconductor.Thecurrenttransportacrossthecontactcantakeplaceviafourbasicprocesses5thatareschematicallyshowninthefigure:

1.Thetransportofelectronsfromthesemiconductorintothemetaloverthe

potentialbarrier(referredtoasthethermionicemissioncurrent)

2.Thetransportofelectronsbyquantummechanicaltunnelingthroughthe

potentialbarrier(referredtoasthetunnelingcurrent)

3.Thetransportofelectronsandholesintothedepletionregionfollowedby

theirrecombination(referredtoastherecombinationcurrent)

4.Thetransportofholesfromthemetalintotheneutralregionofthe

semiconductorfollowedbyrecombination(referredtoastheminoritycarriercurrent)

Inthecaseofpowerrectifiers,thedopingconcentrationinthesemiconductormustberelativelylowtosupportthereversebias(orblocking)voltage.Thisspreadsthedepletionregionoverasubstantialdistance.Consequently,thepotentialbarrieris

172FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

(a)

EFMbi-qVFSECEFS

FEV

METALSEMICONDUCTOR

Fig.4.5Energybanddiagramforametal–semiconductorjunctionaftertheapplicationofaforwardbiasvoltage(electronsareshownascirclesandholesareshownassquares)

notsharpenoughtoallowsubstantialcurrentviathetunnelingprocess.Therecombinationcurrentinthespace-chargeregionisobservableonlyatverylowon-statecurrentlevels.ThecurrenttransportduetotheinjectionofholesisusuallynegligibleunlesstheSchottkybarrierheightislarge.InpowerSchottkyrectifiers,thebarrierheightisintentionallyreducedtolowertheon-statevoltagedropmakingtheminoritycarriercurrentsmall.Consequently,thecurrentflowviathethermionicemissionprocessisthedominantcurrenttransportmechani

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2