过程设备设计答案简答题.docx

上传人:b****4 文档编号:6226344 上传时间:2023-05-09 格式:DOCX 页数:36 大小:233.03KB
下载 相关 举报
过程设备设计答案简答题.docx_第1页
第1页 / 共36页
过程设备设计答案简答题.docx_第2页
第2页 / 共36页
过程设备设计答案简答题.docx_第3页
第3页 / 共36页
过程设备设计答案简答题.docx_第4页
第4页 / 共36页
过程设备设计答案简答题.docx_第5页
第5页 / 共36页
过程设备设计答案简答题.docx_第6页
第6页 / 共36页
过程设备设计答案简答题.docx_第7页
第7页 / 共36页
过程设备设计答案简答题.docx_第8页
第8页 / 共36页
过程设备设计答案简答题.docx_第9页
第9页 / 共36页
过程设备设计答案简答题.docx_第10页
第10页 / 共36页
过程设备设计答案简答题.docx_第11页
第11页 / 共36页
过程设备设计答案简答题.docx_第12页
第12页 / 共36页
过程设备设计答案简答题.docx_第13页
第13页 / 共36页
过程设备设计答案简答题.docx_第14页
第14页 / 共36页
过程设备设计答案简答题.docx_第15页
第15页 / 共36页
过程设备设计答案简答题.docx_第16页
第16页 / 共36页
过程设备设计答案简答题.docx_第17页
第17页 / 共36页
过程设备设计答案简答题.docx_第18页
第18页 / 共36页
过程设备设计答案简答题.docx_第19页
第19页 / 共36页
过程设备设计答案简答题.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

过程设备设计答案简答题.docx

《过程设备设计答案简答题.docx》由会员分享,可在线阅读,更多相关《过程设备设计答案简答题.docx(36页珍藏版)》请在冰点文库上搜索。

过程设备设计答案简答题.docx

过程设备设计答案简答题

过程设备设计答案(简答题)

1.压力容器导言

思考题

1.压力容器主要由哪几部分组成?

分别起什么作用?

答:

压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。

筒体的作用:

用以储存物料或完成化学反应所需要的主要压力空间。

封头的作用:

与筒体直接焊在一起,起到构成完整容器压力空间的作用。

密封装置的作用:

保证承压容器不泄漏。

开孔接管的作用:

满足工艺要求和检修需要。

支座的作用:

支承并把压力容器固定在基础上。

安全附件的作用:

保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。

2.介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响?

答:

介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。

如Q235-A或Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还得进行气密性试验。

而制造毒性程度为中度或轻度的容器,其要求要低得多。

毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于1.0MPa;内部介质为高度或极度毒性危害,选用的管法兰的公称压力应不小于1.6MPa,且还应尽量选用带颈对焊法兰等。

易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。

如Q235-A·F不得用于易燃介质容器;Q235-A不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。

3.《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?

答:

因为pV乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。

4.《压力容器安全技术监察规程》与GB150的适用范围是否相同?

为什么?

答:

不相同。

《压力容器安全技术监察规程》的适用范围:

最高工作压力≥0.1MPa(不含液体静压力);

内直径(非圆形截面指其最大尺寸)≥0.15m,且容积≥0.025m3;

盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。

GB150的适用范围:

0.1MPa≤p≤35MPa,真空度不低于0.02MPa;

按钢材允许的使用温度确定(最高为700℃,最低为-196℃);

对介质不限;

弹性失效设计准则和失稳失效设计准则;

以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;

最大应力理论;

不适用疲劳分析容器。

GB150是压力容器标准是设计、制造压力容器产品的依据;《压力容器安全技术监察规程》是政府对压力容实施安全技术监督和管理的依据,属技术法规范畴。

5.GB150、JB4732和JB/T4735三个标准有何不同?

它们的适用范围是什么?

答:

JB/T4735《钢制焊接常压容器》与GB150《钢制压力容器》属于常规设计标准;JB4732《钢制压力容器

—分析设计标准》是分析设计标准。

JB/T4735与GB150及JB4732没有相互覆盖范围,但GB150与JB4732相互覆盖范围较广。

GB150的适用范围:

设计压力为0.1MPa≤p≤35MPa,真空度不低于0.02MPa;

设计温度为按钢材允许的使用温度确定(最高为700℃,最低为-196℃);

对介质不限;

采用弹性失效设计准则和失稳失效设计准则;

应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;

采用最大应力理论;

不适用疲劳分析容器。

JB4732的适用范围:

设计压力为0.1MPa≤p<100MPa,真空度不低于0.02MPa;

设计温度为低于以钢材蠕变控制其设计应力强度的相应温度(最高为475℃);

对介质不限;

采用塑性失效设计准则、失稳失效设计准则和疲劳失效设计准则,局部应力用极限分析和安定性分析结果来评定;

应力分析方法是弹性有限元法、塑性分析、弹性理论和板壳理论公式、实验应力分析;

采用切应力理论;

适用疲劳分析容器,有免除条件。

JB/T4735的适用范围:

设计压力为-0.02MPa≤p<0.1MPa;

设计温度为大于-20~350℃(奥氏体高合金钢制容器和设计温度低于-20℃,但满足低温低应力工况,且调整后的设计温度高于-20℃的容器不受此限制);

不适用于盛装高度毒性或极度危害的介质的容器;

采用弹性失效设计准则和失稳失效设计准则;

应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;

采用最大应力理论;

不适用疲劳分析容器。

2.压力容器应力分析

思考题

1.一壳体成为回转薄壳轴对称问题的条件是什么?

答:

几何形状、承受载荷、边界支承、材料性质均对旋转轴对称。

2.推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面?

为什么?

答:

不能。

如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。

建立的平衡方程的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。

3.试分析标准椭圆形封头采用长短轴之比a/b=2的原因。

答:

a/b=2时,椭圆形封头中的最大压应力和最大拉应力相等,使椭圆形封头在同样壁厚的情况下承受的内压力最大,因此GB150称这种椭圆形封头为标准椭圆形封头

4.何谓回转壳的不连续效应?

不连续应力有哪些特征,其中β与两个参数的物理意义是什么?

答:

回转壳的不连续效应:

附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。

不连续应力有两个特征:

局部性和自限性。

局部性:

从边缘内力引起的应力的表达式可见,这些应力是的函数随着距连接处距离的增大,很快衰减至0。

不自限性:

连续应力是由于毗邻壳体,在连接处的薄膜变形不相等,两壳体连接边缘的变形受到弹性约束所致,对于用塑性材料制造的壳体,当连接边缘的局部产生塑性变形,弹性约束开始缓解,变形不会连续发展,不连续应力也自动限制,这种性质称为不连续应力的自限性。

β的物理意义:

反映了材料性能和壳体几何尺寸对边缘效应影响范围。

该值越大,边缘效应影响范围越小。

的物理意义:

该值与边缘效应影响范围的大小成正比。

反映边缘效应影响范围的大小。

5.单层厚壁圆筒承受内压时,其应力分布有哪些特征?

当承受内压很高时,能否仅用增加壁厚来提高承载能力,为什么?

答:

应力分布的特征:

周向应力σθ及轴向应力σz均为拉应力(正值),径向应力σr为压应力(负值)。

在数值上有如下规律:

内壁周向应力σθ有最大值,其值为:

,而在外壁处减至最小,其值为

,内外壁σθ之差为pi;径向应力内壁处为-pi,随着r增加,径向应力绝对值逐渐减小,在外壁处σr=0。

轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力和的一半,即

除σz外,其他应力沿厚度的不均匀程度与径比K值有关。

不能用增加壁厚来提高承载能力。

因内壁周向应力σθ有最大值,其值为:

,随K值增加,分子和分母值都增加,当径比大到一定程度后,用增加壁厚的方法降低壁中应力的效果不明显。

6.单层厚壁圆筒同时承受内压pi与外压po用时,能否用压差

代入仅受内压或仅受外压的厚壁圆筒筒壁应力计算式来计算筒壁应力?

为什么?

答:

不能。

从Lamè公式

可以看出各应力分量的第一项与内压力和外压力成正比,并不是与

成正比。

而径向应力与周向应力的第二项与

成正比。

因而不能用

表示。

7.单层厚壁圆筒在内压与温差同时作用时,其综合应力沿壁厚如何分布?

筒壁屈服发生在何处?

为什么?

答:

单层厚壁圆筒在内压与温差同时作用时,其综合应力沿壁厚分布情况题图。

内压内加热时,综合应力的最大值为周向应力,在外壁,为拉伸应力;轴向应力的最大值也在外壁,也是拉伸应力,比周向应力值小;径向应力的最大值在外壁,等于0。

内压外加热,综合应力的最大值为周向应力,在内壁,为拉伸应力;轴向应力的最大值也在内壁,也是拉伸应力,比周向应力值小;径向应力的最大值在内壁,是压应力。

筒壁屈服发生在:

内压内加热时,在外壁;内压外加热时,在内壁。

是因为在上述两种情况下的应力值最大。

8.为什么厚壁圆筒微元体的平衡方程

,在弹塑性应力分析中同样适用?

答:

因平衡方程的建立与材料性质无关,只要弹性和弹塑性情况下的其它假定条件一致,建立的平衡方程完全相同。

9.一厚壁圆筒,两端封闭且能可靠地承受轴向力,试问轴向、环向、径向三应力之关系式

,对于理想弹塑性材料,在弹性、塑性阶段是否都成立,为什么?

答:

对于理想弹塑性材料,在弹性、塑性阶段都成立。

在弹性阶段成立在教材中已经有推导过程,该式是成立的。

由拉美公式可见,成立的原因是轴向、环向、径向三应力随内外压力变化,三个主应力方向始终不变,三个主应力的大小按同一比例变化,由式

可见,该式成立。

对理想弹塑性材料,从弹性段进入塑性段,在保持加载的情况下,三个主应力方向保持不变,三个主应力的大小仍按同一比例变化,符合简单加载条件,根据塑性力学理论,可用全量理论求解,上式仍成立。

10.有两个厚壁圆筒,一个是单层,另一个是多层圆筒,二者径比K和材料相同,试问这两个厚壁圆筒的爆破压力是否相同?

为什么?

答:

从爆破压力计算公式看,理论上相同,但实际情况下一般不相同。

爆破压力计算公式中没有考虑圆筒焊接的焊缝区材料性能下降的影响。

单层圆筒在厚壁情况下,有较深的轴向焊缝和环向焊缝,这两焊缝的焊接热影响区的材料性能变劣,不易保证与母材一致,使承载能力下降。

而多层圆筒,不管是采用层板包扎、还是绕板、绕带、热套等多层圆筒没有轴向深焊缝,而轴向深焊缝承受的是最大的周向应力,圆筒强度比单层有轴向深焊缝的圆筒要高,实际爆破时比单层圆筒的爆破压力要高。

11.预应力法提高厚壁圆筒屈服承载能力的基本原理是什么?

答:

使圆筒内层材料在承受工作载荷前,预先受到压缩预应力作用,而外层材料处于拉伸状态。

当圆筒承受工作压力时,筒壁内的应力分布按拉美公式确定的弹性应力和残余应力叠加而成。

内壁处的总应力有所下降,外壁处的总应力有所上升,均化沿筒壁厚度方向的应力分布。

从而提高圆筒的初始屈服压力,更好地利用材料。

12.承受横向均布载荷的圆形薄板,其力学特征是什么?

其承载能力低于薄壁壳体的承载能力的原因是什么?

答:

承受横向均布载荷的圆形薄板,其力学特征是:

承受垂直于薄板中面的轴对称载荷;

板弯曲时其中面保持中性;

变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变;

平行于中面的各层材料互不挤压。

其承载能力低于薄壁壳体的承载能力的原因是:

薄板内的应力分布是线性的弯曲应力,最大应力出现有板面,其值与

成正比;而薄壁壳体内的应力分布是均匀分布,其值与

成正比。

同样的

情况下,按薄板和薄壳的定义,

,而薄板承受的压力p就远小于薄壳承受的压力p了。

13.试比较承受均布载荷作用的圆形薄板,在周边简支和固支情况下的最大弯曲应力和挠度的大小和位置。

答:

周边固支情况下的最大弯曲应力和挠度的大小为:

周边简支情况下的最大弯曲应力和挠度的大小为:

应力分布:

周边简支的最大应力在板中心;周边固支的最大应力在板周边。

两者的最大挠度位置均在圆形薄板的中心。

周边简支与周边固支的最大应力比值

周边简支与周边固支的最大挠度比值

其结果绘于下图

14.试述承受均布外压的回转壳破坏的形式,并与承受均布内压的回转壳相比有何异同?

答:

承受均布外压的回转壳的破坏形式主要是失稳,当壳体壁厚较大时也有可能出现强度失效;承受均布内压的回转壳的破坏形式主要是强度失效,某些回转壳体,如椭圆形壳体和碟形壳体,在其深度较小,出现在赤道上有较大压应力时,也会出现失稳失效。

15.试述有哪些因素影响承受均布外压圆柱壳的临界压力?

提高圆柱壳弹性失稳的临界压力,采用高强度材料是否正确,为什么?

答:

影响承受均布外压圆柱壳的临界压力的因素有:

壳体材料的弹性模量与泊松比、长度、直径、壁厚、圆柱壳的不圆度、局部区域的折皱、鼓胀或凹陷。

提高圆柱壳弹性失稳的临界压力,采用高强度材料不正确,因为高强度材料的弹性模量与低强度材料的弹性模量相差较小,而价格相差往往较大,从经济角度不合适。

但高强度材料的弹性模量比低强度材料的弹性模量还量要高一些,不计成本的话,是可以提高圆柱壳弹性失稳的临界压力的。

16.求解内压壳体与接管连接处的局部应力有哪几种方法?

答:

有:

应力集中系数法、数值解法、实验测试法、经验公式法。

17.圆柱壳除受到压力作用外,还有哪些从附件传递过来的外加载荷?

答:

还有通过接管或附件传递过来的局部载荷,如设备自重、物料的重量、管道及附件的重量、支座的约束反力、温度变化引起的载荷等。

18.组合载荷作用下,壳体上局部应力的求解的基本思路是什么?

试举例说明。

答:

组合载荷作用下,壳体上局部应力的求解的基本思路是:

在弹性变形的前提下,壳体上局部应力的总应力为组合载荷的各分载荷引起的各应力分量的分别叠加,得到总应力分量。

如同时承受内压和温度变化的厚壁圆筒内的综合应力计算。

1.两个直径、厚度和材质相同的圆筒,承受相同的周向均布外压,其中一个为长圆筒,另一个为短圆筒,试问它们的临界压力是否相同,为什么?

在失稳前,圆筒中周向压应力是否相同,为什么?

随着所承受的周向均布外压力不断增加,两个圆筒先后失稳时,圆筒中的周向压应力是否相同,为什么?

答:

临界压力不相同。

长圆筒的临界压力小,短圆筒的临界压力大。

因为长圆筒不能受到圆筒两端部的支承,容易失稳;而短圆筒的两端对筒体有较好的支承作用,使圆筒更不易失稳。

在失稳前,圆筒中周向压应力相同。

因为在失稳前圆筒保持稳定状态,几何形状仍保持为圆柱形,壳体内的压应力计算与承受内压的圆筒计算拉应力相同方法。

其应力计算式中无长度尺寸,在直径、厚度、材质相同时,其应力值相同。

圆筒中的周向压应力不相同。

直径、厚度和材质相同的圆筒压力小时,其壳体内的压应力小。

长圆筒的临界压力比短圆筒时的小,在失稳时,长圆筒壳内的压应力比短圆筒壳内的压应力小。

2.承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力。

对否,为什么?

且采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理。

对否,为什么?

答:

承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力,对。

只要设置加强圈均可提高圆筒的刚度,刚度提高就可提高其临界压力。

采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理,不对。

采用的加强圈愈多,壳壁所需厚度就愈薄,是对的。

但加强圈多到一定程度后,圆筒壁厚下降较少,并且考虑腐蚀、制造、安装、使用、维修等要求,圆筒需要必要的厚度,加强圈增加的费用比圆筒的费用减少要大,经济上不合理。

3.压力容器材料及环境和时间对其性能的影响

思考题

1.压力容器用钢有哪些基本要求?

答:

有较高的强度,良好的塑性、韧性、制造性能和与介质相容性。

2.影响压力容器钢材性能的环境因素主要有哪些?

答:

主要有温度高低、载荷波动、介质性质、加载速率等。

3.为什么要控制压力容器用钢中的硫、磷含量?

答:

因为硫能促进非金属夹杂物的形成,使塑性和韧性降低。

磷能提高钢的强度,但会增加钢的脆性,特别是低温脆性。

将硫和磷等有害元素含量控制在很低水平,即大大提高钢材的纯净度,可提高钢材的韧性、抗中子辐照脆化能力,改善抗应变时效性能、抗回火脆性性能和耐腐蚀性能。

4.为什么说材料性能劣化引起的失效往往具有突发性?

工程上可采取哪些措施来预防这种失效?

答:

材料性能劣化主要表现是材料脆性增加,韧性下降,如材料的低温脆化;高温蠕变的断裂呈脆性、珠光体球化、石墨化、回火脆化、氢腐蚀和氢脆;中子辐照引起材料辐照脆化。

外观检查和无损检测不能有效地发现脆化,在断裂前不能被及时发现,出现事故前无任何征兆,具有突发性。

工程上可采取预防这种失效的措施有:

对低温脆化选择低温用钢、高温蠕变断裂在设计时按蠕变失效设计准则进行设计、珠光体球化采用热处理方法恢复性能、石墨化采用在钢中加入与碳结合能力强的合金元素方法、回火脆性采用严格控制微量杂质元素的含量和使设备升降温的速度尽量缓慢、氯腐蚀和氢脆在设计时采用抗氢用钢、中子辐照材料脆化在设计时预测及时更换。

5.压力容器选材应考虑哪些因素?

答:

应综合考虑压力容器的使用条件、零件的功能和制造工艺、材料性能、材料使用经验、材料价格和规范标准。

4.压力容器设计

思考题

1.为保证安全,压力容器设计时应综合考虑哪些条件?

具体有哪些要求?

答:

压力容器设计时应综合考虑:

材料、结构、许用应力、强度、刚度、制造、检验等环节。

压力容器设计的具体要求:

压力容器设计就是根据给定的工艺设计条件,遵循现行的规范标准规定,在确保安全的前提下,经济、正确地选择材料,并进行结构、强(刚)度和密封设计。

结构设计主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等要求;强(刚)度设计的内容主要是确定结构尺寸,满足强度或刚度及稳定性要求;密封设计主要是选择合适的密封结构和材料,保证密封性能良好。

2.压力容器的设计文件应包括哪些内容?

答:

包括设计图样、技术条件、强度计算书,必要时还应包括设计或安装、使用说明书。

若按分析设计标准设计,还应提供应力分析报告。

3.压力容器设计有哪些设计准则?

它们和压力容器失效形式有什么关系?

答:

压力容器设计准则有:

强度失效设计准则:

弹性失效设计准则、塑性失效设计准则、爆破失效设计准则、弹塑性失效设计准则、疲劳失效设计准则、蠕变失效设计准则、脆性断裂失效设计准则;

刚度失效设计准则;

稳定失效设计准则;

泄漏失效设计准则。

弹性失效设计准则将容器总体部位的初始屈服视为失效,以危险点的应力强度达到许用应力为依据;塑性失效设计准则以整个危险面屈服作为失效状态;爆破失效设计准则以容器爆破作为失效状态;弹塑性失效设计准则认为只要载荷变化范围达到安定载荷,容器就失效;疲劳失效设计准则以在载荷反复作用下,微裂纹于滑移带或晶界处形成,并不断扩展,形成宏观疲劳裂纹并贯穿容器厚度,从而导致容器发生失效;蠕变失效设计准则以在高温下压力容器产生蠕变脆化、应力松驰、蠕变变形和蠕变断裂为失效形式;脆性断裂失效设计准则以压力容器的裂纹扩展断裂为失效形式;刚度失效设计准则以构件的弹性位移和转角超过规定值为失效;稳定失效设计准则以外压容器失稳破坏为失效形式;泄漏失效设计准则以密封装置的介质泄漏率超过许用的泄漏率为失效。

4.什么叫设计压力?

液化气体储存压力容器的设计压力如何确定?

答:

压力容器的设计载荷条件之一,其值不得低于最高工作压力。

液化气体储存压力容器的设计压力,根据大气环境温度,考虑容器外壁有否保冷设施,根据工作条件下可能达到的最高金属温度确定。

5.一容器壳体的内壁温度为Ti,外壁温度为To,通过传热计算得出的元件金属截面的温度平均值为T,请问设计温度取哪个?

选材以哪个温度为依据?

答:

设计温度取元件金属截面的温度平均值T。

选材以元件金属截面的温度平均值为依据。

6.根据定义,用图标出计算厚度、设计厚度、名义厚度和最小厚度之间的关系;在上述厚度中,满足强度(刚度、稳定性)及使用寿命要求的最小厚度是哪一个?

为什么?

答:

计算厚度、设计厚度、名义厚度和最小厚度之间的关系

满足强度(刚度、稳定性)及使用寿命要求的最小厚度是设计厚度。

因为设计厚度是计算厚度加腐蚀裕量,计算厚度可以满足强度、刚度和稳定性的要求,再加上腐蚀裕量可以满足寿命的要求。

因为腐蚀裕量不一定比厚度负偏差加第一厚度圆整值的和小,最小厚度有可能比计算厚度小,而不能保证寿命。

7.影响材料设计系数的主要因素有哪些?

答:

影响材料设计系数的主要因素有:

应力计算的准确性、材料性能的均匀必、载荷的确切程度、制造工艺和使用管理的先进性以及检验水平等因素。

8.压力容器的常规设计法和分析设计法有何主要区别?

答:

压力容器的常规设计法和分析设计法的主要区别:

常规设计法只考虑承受“最大载荷”按一次施加的静载,不考虑热应力和疲劳寿命问题;

常规设计法以材料力学及弹性力学中的简化模型为基础,确定筒体与部件中平均应力的大小,只要此值限制在以弹性失效设计准则所确定的许用应力范围内,则认为筒体和部件是安全的;

常规设计法只解决规定容器结构形式的问题,无法应用于规范中未包含的其他容器结构和载荷形式,不利于新型设备的开发和使用;

分析设计法对承受各种载荷、任何结构形式的压力容器进行设计时,先进行详细的应力分析,将各种外载荷或变形约束产生的应力分别计算出来,然后进行应力分类,再按不同的设计准则来限制,保证容器在使用期内不发生各种形式的失效。

9.薄壁圆筒和厚壁圆筒如何划分?

其强度设计的理论基础是什么?

有何区别?

答:

当满足δ/D≤0.1或K≤1.2属薄壁圆筒,否则属厚壁圆筒。

强度设计的理论基础是弹性失效设计准则。

弹性失效设计准则是以危险点的应力强度达到许用应力为依据的。

对于各处应力相等的构件,如内压薄壁圆筒,这种设计准则是正确的。

但是对于应力分布不均匀的构件,如内压厚壁圆筒,由于材料韧性较好,当危险点(内壁)发生屈服时,其余各点仍处于弹性状态,故不会导致整个截面的屈服,因而构件仍能继续承载。

在这种情况下,弹性失效(一点强度)设计准则就显得有些保守。

10.高压容器的圆筒有哪些结构形式?

它们各有什么特点和适用范围?

答:

高压容器的圆筒的结构形式有:

多层包扎式、热套式、绕板式、整体多层包扎式、绕带式。

特点和适用范围:

多层包扎式:

目前世界上使用最广泛、制造和使用经验最为丰富的组合式圆筒结构;制造工艺简单,不需要大型复杂的加工设备;与单层式圆筒相比安全可靠性高,层板间隙具有阻止缺陷和裂纹向厚度方向扩展的能力,减少了脆性破坏的可能性,同时包扎预应力可有效改善圆筒的应力分布;但多层包扎式圆筒制造工序多、周期长、效率低、钢板材料利用率低,尤其是筒节间对接的深环焊缝对容器的制造质量和安全有显著影响。

对介质适应性强,可根据介质的特性选择合适的内筒材料。

其制造范围为最高操作压力290MPa、操作温度-30~350℃、筒体最小内径380mm、筒体最大外直径6000mm、重量850~1000吨。

热套式:

采用厚钢板卷焊成直径不同但可过盈配合的筒节,然后将外层筒节加热到计算的温度进行套合,冷却收缩后便得到紧密贴合的厚壁筒节。

热套式外筒对内筒产生有一定量的预压应力,可提高容器的承载能力。

具有包扎式圆筒的大多数优点外,还具有工序少,周期短的优点。

热套式需较大尺寸的加工设备,热套工艺要求技术高,不易制造较大直径和长度的容器。

其适用范围与多层包扎式基本相同。

绕板式:

材料利用率高、生产率高、材料供应方便、制造过程中机械化程度高,占用生产面积小,工序少,适用于大批量生产。

适用于直径大而长度短的容器,直径越大,绕制越方便。

整体多层包扎式:

包扎时各层的环焊缝相互错开,克服了多层包扎式筒节间的深环焊缝,圆筒与封头或法兰间的环焊缝改为一定角度的斜面焊缝,承载面积增大,具有高的可靠性。

适用范围与多层包扎式相同。

绕带式:

有型槽绕带式和扁平钢带倾角错绕式两

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 制度规范

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2