连续统的不可数性Word文档格式.docx

上传人:b****4 文档编号:6410212 上传时间:2023-05-06 格式:DOCX 页数:21 大小:178.31KB
下载 相关 举报
连续统的不可数性Word文档格式.docx_第1页
第1页 / 共21页
连续统的不可数性Word文档格式.docx_第2页
第2页 / 共21页
连续统的不可数性Word文档格式.docx_第3页
第3页 / 共21页
连续统的不可数性Word文档格式.docx_第4页
第4页 / 共21页
连续统的不可数性Word文档格式.docx_第5页
第5页 / 共21页
连续统的不可数性Word文档格式.docx_第6页
第6页 / 共21页
连续统的不可数性Word文档格式.docx_第7页
第7页 / 共21页
连续统的不可数性Word文档格式.docx_第8页
第8页 / 共21页
连续统的不可数性Word文档格式.docx_第9页
第9页 / 共21页
连续统的不可数性Word文档格式.docx_第10页
第10页 / 共21页
连续统的不可数性Word文档格式.docx_第11页
第11页 / 共21页
连续统的不可数性Word文档格式.docx_第12页
第12页 / 共21页
连续统的不可数性Word文档格式.docx_第13页
第13页 / 共21页
连续统的不可数性Word文档格式.docx_第14页
第14页 / 共21页
连续统的不可数性Word文档格式.docx_第15页
第15页 / 共21页
连续统的不可数性Word文档格式.docx_第16页
第16页 / 共21页
连续统的不可数性Word文档格式.docx_第17页
第17页 / 共21页
连续统的不可数性Word文档格式.docx_第18页
第18页 / 共21页
连续统的不可数性Word文档格式.docx_第19页
第19页 / 共21页
连续统的不可数性Word文档格式.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

连续统的不可数性Word文档格式.docx

《连续统的不可数性Word文档格式.docx》由会员分享,可在线阅读,更多相关《连续统的不可数性Word文档格式.docx(21页珍藏版)》请在冰点文库上搜索。

连续统的不可数性Word文档格式.docx

19世纪初期,画家的画布还像以往一样,仅仅充当了一扇窗户,人们通过这扇窗户,可以看到有趣的人和事。

当然,画家可以自由设定基调,选择颜色,确定明暗,强调某一局部而弱化其他部分;

但无论如何,画家的作品就像一幅屏幕,让大家看到瞬间静止的事物。

  19世纪后半期,情况发生了明显的变化。

在一些美术大师如保罗·

塞尚、保罗·

高庚和樊尚·

凡高的影响下,美术作品获得了自己的生命。

画家可以视画布为发挥自己绘画技能的二维战场。

例如,塞尚认为,可以任意将静物苹果与梨变形,以增强整体效果。

他批评伟大的印象派画家克劳德·

莫奈只有“一只眼睛”,他的意思是说,画家的艺术不仅仅限于记录眼睛所看到的事物。

  总之,美术宣告了从视觉现实中的独立,同时,数学也显示出其脱离物质世界的倾向。

这种并行的情况很有趣,以塞尚、高庚和凡高为代表的绘画,连同以高斯、鲍耶和罗巴切夫斯基为代表的数学,其哲学内涵意义深远,影响持久,至今不衰。

  当然,我们也必须看到,这些发展并非得到了人们的一致认可。

20世纪末,任何一个到美术馆参观的人,随时都能听到种种议论,人们对视觉艺术的现状,对在大幅画布上毫无意义地胡乱涂抹,对那些自称并不反映现实的作品(这些作品常常争议很大,而又十分昂贵)颇有微词。

艺术家的赞助人则常常抱怨当代艺术家的解放走得太远了。

他们渴望看到他们所熟悉的肖像画和令人赏心悦目的风景画。

  在这一方面,数学与美术也十分相似。

在现代数学界中也有一种对当今数学状况不满的情绪。

20世纪的数学家不但偏好非欧几何革命所带来的思想解放,而且还推动数学越来越远地脱离与实在世界的联系,直到把他们的逻辑结构变得抽象而神秘,以致使物理学家和工程师都如堕烟海,不知其所云。

在许多人看来,这种趋势已把数学变成了一种毫无意义的符号游戏。

数学史家莫里斯·

克兰对这种倾向提出了最畅言无忌的批评,他写道:

  “随着深奥晦涩的原理被系统地阐述,已远离了最初的应用领域,而专注于抽象的形式。

通过引入上百个分支概念,数学雨后春笋般地扩张为琐细而庞杂的一个个小门类,它们相互之间很少联系,且与最初的应用领域很少关联。

  克兰认为,数学在其争取独立于物理学的来之不易的自由的过程中,走得太远了,以致成为枯燥而任意的纯粹形式主义体系。

对他的严厉批评,数学界确应认真考虑。

  作为对克兰批评的回答,令人感兴趣的是,数学理论无论有多么抽象,却常常出人意料地应用于非常确实的实际问题。

甚至将数学与实在断然分开的革命的非欧几何,也可以在现代物理书籍中找到它的足迹,现代相对论宇宙学就在很大程度上依据非欧几何建立了宇宙的模型。

当然,19世纪的数学家是不可能预见到这种应用的,他们对于非欧几何,只是为了研究而研究;

如今,非欧几何已成为应用数学的一部分,并成为物理学家的必要工具。

数学有时会在最不可思议的地方出现。

  论争还在继续。

最后,历史学家可能会看到,今天的数学虽然已远远地脱离了实在世界的桎梏,但令人难以置信的是,数学总能在其他学科的研究与发展中承担不可替代的角色。

数学的抽象化将永远是19世纪留给人类的一笔财富。

  除了非欧几何的产生所提出的这些问题以外,另一个主要论争是关于微积分的逻辑基础。

我们可以回想一下,微积分是17世纪末由牛顿和莱布尼兹奠定基础,而后在18世纪由李昂纳德·

欧拉进一步完善的。

然而,这些先驱者及其同时代的数学天才,都未能对微积分的基础给予充分注意。

这些数学家如履薄冰,基础上的裂痕随时可能招致灭顶之灾。

  长期以来,人们始终感到,微积分有其问题。

问题存在于对“无穷大”和“无穷小”概念的使用上,在牛顿的流数术和莱布尼兹的微积分中,这是必不可少的。

微积分的一个核心思想是“极限”。

无论微分,还是积分(还不要说级数收敛性和函数连续性的问题),都以这种或那种形式依据于这一概念。

“极限”一词很有启发性,并有很强的直感。

我们常常说,“我们的耐性或耐力到了极限”。

然而,如果我们要从逻辑上准确地说明这一概念,就立刻出现了困难。

  牛顿曾对此作过尝试。

他的流数概念要求他必须观察两个量的比,并确定当这两个量同时趋向于零时,它们的比将会怎样。

用现代术语来说,他讲的正是两个无穷小量的比例极限,但他使用了一个更具特色的词“最后比”。

对于牛顿来说,所谓两个正在消失的量的最后比

  “……应当理解为,既不是在两个量消失之前,也不是在它们消失之后,而是正当它们消失时的瞬间比。

  当然,作为数学定义,这没有什么意义。

我们可能赞同牛顿关于不应将极限概念基于两个量消失之前的比这一观点,但他所说两个量消失之后的比又是什么意思呢?

牛顿考虑的似乎是当分子和分母刚好同时成为零时

 

其说的逻辑困境。

  那么,莱布尼兹如何走出这一泥淖呢?

他同样需要阐明极限过程中发生的变化,但他倾向于通过对“无穷小量”的讨论来探索这一问题。

莱布尼兹所谓的无穷小量尽管不是零,但却小于任意有限量。

他的无穷小量,犹如化学中的原子一样,是不可再分的数学单元,是最接近于零的量。

但与此相关的哲学问题显然使莱布尼兹感到困惑,他不得不作出如下晦涩的说明:

  “当我们谈及无穷小量……(即在我们的知识中是最小的),它可以被看作是……无限小……如果有人想理解这些(无穷小),可以想象它们是最终的东西……这就足够了……如此假设是充分的……即使认为这样的东西是不可能的,也完全可以利用它们作为计算的手段,就像代数中用虚根有极大好处一样。

  在这里,除了莱布尼兹对复数的偏见以外,还可以看到他关于数学的令人莫名其妙的陈述。

显然,概念的含糊不清(特别是构成微积分基础的概念)使莱布尼兹犹豫不定。

  当数学家们正因微积分遗留的逻辑基础问题而深感不安时,又受到来自上帝的仆人——乔治·

贝克莱大主教(1685—1753年)的强有力的攻击。

贝克莱大主教在他刻薄的文章《精神分析学家或神学家致不信教的数学家》中嘲弄那些批评神学基础是一种虚幻信仰的数学家,攻击他们所信奉的微积分,其逻辑基础同样十分脆弱。

贝克莱采取以子之矛陷子之盾的策略:

  “可以说,所有这些(来自数学的)观点都是那些对宗教过于苛求的人设想和信奉的,他们自称只相信亲眼所见……那么如果他们能消化二阶或三阶流数和微分,就不会因为某一神学观点而反胃。

  如果说这些挖苦还不够刻薄的话,贝克莱又发出了更加无情的嘲笑:

  “所谓流数是什么?

数学家们说,是瞬时增量的速度。

那么,这些瞬时增量又是什么?

它们既不是有限量,也不是无穷小量,然而又不是虚无。

我们难道称它们为消失量的幽灵吗……?

  这真糟透了,微积分的基础居然成了“消失量的幽灵”。

可以想象,对于数以百计的数学家们来说,贝克莱的冷嘲热讽会使他们多么焦躁不安。

  数学界逐渐认识到,他们必须正视这一令人头痛的问题。

纵观18世纪,数学家们对微积分在实际应用上的巨大成功过于乐观,以致阻碍了对其基础理论的研究。

但是数学界内部日益增多的关注及外界贝克莱的傲慢无礼,已使他们别无选择。

这个问题已经迫在眉睫,不能不解决了。

  这样,我们看到一个又一个才华横溢的数学家开始探讨这一基础理论。

建立严格的“极限”理论是一个困难的漫长的过程,因为这一概念的内涵非常深奥,需要精确的推理和对实数系性质的深刻理解,这绝非易事。

但数学家们对这个问题的研究已逐渐有所突破。

1821年,法国数学家奥古斯坦-路易·

柯西(1789—1857年)提出了如下定义:

  当一个变量逐次取的值无限趋近一个定值时,如果最终使变量的值与该定值的差要多小就有多小,那么,这一定值就称为所有其他值的极限。

  我们看到,柯西的定义避免了使用像“无穷小”样含糊不清的词,他没有将自己束缚于确定变量达到极限时的瞬间会如何如何。

因而,这里也就不会出现消失量的幽灵。

相反,他只是说,如果我们能够使变量的值与某一定值的差要多小就有多小,那么,这一定值就是该变量的极限。

这就是所谓“极限回避”,柯西的定义绕开了关于达到极限的瞬间会发生什么这一哲学上的障碍。

在柯西看来,最后瞬间的结局是完全不相干的,重要的是我们已经尽可能地澄清了极限这一概念,这才是我们所需要的。

  柯西的定义产生了深远的影响,以这一定义为基石,他继续阐明了微积分的许多重要概念。

数学家们经过漫长的道路,进一步完善了基于这一极限定义的微积分,有力地反击了贝克莱大主教的“关心”。

然而,柯西的陈述尚有一些不足之处。

首先,他讲到,一个变量“趋近”某一极限,仅凭幻想就提出了一个关于运动的不明确的概念;

如果我们必须依靠直觉来阐述关于点的移动和相互接近的概念,那么,我们仅仅依赖直觉提出“极限”概念难道就会更好些吗?

其次,柯西使用的“无限”这一措词看起来也有点儿不确定;

其意义需要进一步明确。

最后,柯西的定义完全是文字叙述,有必要代之以简洁、明确、清晰的数学符号。

  于是,便出现了德国数学家卡尔·

维尔斯特拉斯(1815—1897年)及其追随者。

他们使用一种读来有些拗口的方法,即“微积分的算术化”,支撑起微积分的基础。

维尔斯特拉斯学派的语言是“当x趋近于a时,函数f(x)以L为极限”,可以严格地表述为:

  对于任意给定的ε>0,总存在着一个δ>0,所以,如果0<|x—a|<δ,那么,|f(x)-L|<ε能够成立。

不必全面理解这一定义,我们就可以清楚地看出,这个定义与柯西的定义明显不同。

维尔斯特拉斯的定义几乎全部使用了数学符号,而且无一处暗示某一量向其他一些量的移动。

总之,这是一个极限的静态定义。

另外,维尔斯特拉斯的定义与前面所引牛顿和莱布尼兹的含糊不清、几乎引人发笑的陈述相比,大相径庭。

维尔斯特拉斯逻辑严谨的定义虽然缺乏其前辈的某些趣味和魅力,但在数学上却是无懈可击的。

在此基础上建立起的微积分大厦一直矗立至今。

康托与无穷的挑战

  科学中常常会出现这种情况,一个问题的解决打开了解决另一个问题的大门。

随着越来越少地依赖直觉构造概念而越来越多地依靠维尔斯特拉斯数学中的ε和δ,数学家们开始从更高的视角严格地审查微积分。

他们得到了一些非常奇特和令人不安的发现。

  例如,考虑有理数与无理数两者之间的区别。

有理数全都可以写成分数的形式,可以表示为整数的比。

如果把有理数化为小数,则很容易确定:

循环小数,而是无限不循环小数。

  我们可以说,不论有理数,还是无理数,在实数轴上是处处稠密的,即:

在任意两个有理数之间,分布着无穷多个无理数;

反之亦然,在任何两个无理数之间也分布着无穷多个有理数。

自然而然,我们会放心地推断,实数轴上一定均匀地分布着两个基本相等的巨大的有理数族与无理数族。

  然而,19世纪,随着时间的推移,越来越多的数学发现表明,与上述认识相反,这两个数族并不相等。

这些发现一般需要非常高深的技巧和精妙的推理。

例如,要证明函数在每一个无理点连续(直觉上不间断),并在每一个有理点不连续(间断),就必须证明在每一个有理点不存在连续的函数,而在每一个无理点不存在不连续的函数。

这里有一个明显的指标,即在有理数族与无理数族之间不存在对称或平衡。

这就表明,从某种根本意义上说,有理数与无理数是不可交换的数族,但当时的数学家对这两个数族的根本性质,尚不十分明了。

  因而,对实数系性质的深刻理解就促成了我们本章将要讨论的定理的产生。

虽然柯西、维尔斯特拉斯及其同事们成功地用“极限”概念建立了微积分大厦,但数学家们越来越清楚地认识到,最重要、最基本的问题是将微积分最终置于集合的严格基础之上。

探索这个问题,并单枪匹马地创立了奇妙的集合论的是一位时而被人恶意中伤,又曾一度精神崩溃的天才,他的名字叫乔治·

费迪南德·

路德维希·

菲利普·

康托。

  康托1845年出生于俄国,但他12岁的时候,随家移居到德国。

宗教是康托家庭的重要组成部分。

康托的父亲原是犹太教徒,后来皈依了新教,而他的母亲则生来就是罗马天主教徒。

由于家庭中这种混合的宗教信仰,所以,毫不奇怪,小乔治对神学产生了一种终生的兴趣,特别是那些与无穷性质有关的神学问题对成年康托的数学产生了很大的影响。

  并且,康托的家庭还显示了明显的艺术素质。

在康托家庭中,音乐受到特别的尊崇。

康托有几个亲戚在大交响乐团演奏。

乔治本人是一个很不错的素描画家,他留给后人一些很能表现他天才的铅笔画。

总之,我们可以说康托具备了“艺术家”的天性。

  这位敏感的年轻人特别擅长数学,1867年,他在柏林大学获得博士学位。

在此,他从师于维尔斯特拉斯,并完全掌握了前面所介绍的有关微积分的严谨的推理方法。

康托对数学分析的深入研究使他越来越多地考虑各种数集之间的本质区别。

特别是,他开始认识到,创立一种比较数集大小的方法是十分重要的。

  表面看来,比较数集大小似乎轻而易举:

只要会数数,就会比较。

如果有人问你,“你左手与右手的手指一样多吗?

”你只要分别数一数每只手的手指,确认每只手都有5个手指,然后,就可以作出肯定的回答。

看来,原始的“数数”方法似乎对于确定更复杂的“同样大小”或“相同基数”概念也是必要的。

然而,乔治·

康托以一种貌似天真的方法,颠倒了前人传统的观念。

  我们来看一看他是如何论证的。

首先假设我们生活在一种数学知识非常有限的文化中,人们最多只能数到“3”。

这样,我们就无法用数数的方法来比较左手与右手的手指数目,因为我们的数系不能使我们数到“5”。

在超出我们计数能力的情况下,是否就无法确定“相同基数”了呢?

完全不是。

实际上,我们不必去数手指,而只需将两手合拢,使左手拇指与右手拇指,左手食指与右手食指……一一对齐,就能够回答这个问题了。

这种方法展示了一种纯粹的一一对应关系,然后,我们可以回答,“是的,我们左手与右手的手指一样多”。

  我们再来看另一个例子。

假设许多观众涌入一个大礼堂。

那么,观众与座椅是否一样多呢?

要回答这个问题,我们可以分别数一数观众与座椅,然后将两个数字加以比较,但这种方法过于繁琐。

我们其实只需要求礼堂中的所有观众坐下。

如果每个人都有座位,或者,每个座位都有人,那么答案就是肯定的,因为坐下这个过程已显示了一种完全的一一对应关系。

  这些例子阐明了一个关键的论据,我们无须去数集合中元素的个数,以确定这些集合是否具有同样数值。

相反,根据一一对应关系来确定同等数量的概念已成为一种更原始和更基本的概念;

相形之下,数数的方法却成了更复杂和更高级的方法。

  乔治·

康托对这一概念作出了如下定义:

  如果能够根据某一法则,使集合M与集合N中的元素建立一一对应的关系……那么,集合M与集合N等价。

  如果集合M与集合N符合上述康托的等价定义,那么,按现代数学家的语言,集合M与集合N“等势”或具有“相同基数”。

然而,我们暂且抛开这些术语不谈。

这一定义之所以重要,就在于它并未限定集合M与集合N必须包含有限个元素;

因此它同样适用于那些包含无限多个元素的集合。

  据此,康托进入了一片未开垦的处女地。

在数学发展的历程中,人们始终以一种怀疑的眼光(即使不是敌对的眼光)看待无穷,并尽可能回避这一概念。

从古希腊时期直到康托时代,哲学家和数学家们都只承认“潜无穷”的存在。

也就是说,他们能够在如下意义上同意整数集是无穷的:

对于整数集中的任何一个数我们都能找到下一个比它更大的整数,但我们决不可能穷举所有整数。

例如,可以想象把每一个整数都写在一张纸条上,然后把这些纸条放进一个(非常大的)袋子里,那么,即使地老天荒我们的工作也永远不会终止。

  但是,康托的前辈们反对“实无穷”的概念——即,他们反对认为这一过程能够结束或袋子能够装满的观点。

用卡尔·

弗里德里希·

高斯的话说:

  “……我首先反对将无穷量作为一个实体,这在数学中是从来不允许的。

所谓无穷,只是一种说话的方式……”

  康托不同意高斯的观点。

与其他无穷集相比,他极愿意将这个装有所有整数的袋子看作一个自足的和完整的实体。

与高斯不同,他不是将“无穷”仅仅看作一种说话的方式而不予考虑。

对于康托来说,“无穷”是一个应予以高度重视的确实的数学概念,值得我们对其进行严格的理性论证。

  这样,乔治·

康托仅仅依据这两个基本前提(即可以通过一一对应的方法来确定相同基数和实无穷是一个确实的概念),就创立了最令人兴奋和意义十分深远的理论。

这一理论使我们进入了一个难以捉摸的奇特世界,虽然一些数学权威时时嘲笑他的努力,但康托没有因此而气馁。

终于,凭着天才和勇气,康托以完全前所未有的方式,正面探讨无穷。

  我们首先设自然数集N={1,2,3,……},并设偶数集E={2,4,6,……}。

注意到这两个数集都是完全集,而不必顾忌他们的无穷性质。

根据康托的定义,我们可以很容易看出集合N与集合E具有“相同基数”,因为我们可以列出这两个数集之间单纯的一一对应关系:

  这种对应关系明确地显示出,N集中的每一个元素都被一个、并且只被一个偶数(即其2倍)所指定;

反之,每一个偶数也都被一个、并且只被一个自然数(即其一半)指定。

康托认为,这两个无穷数集显然是等价的。

当然,乍一看,似乎很矛盾,这里人们本来会以为,偶数的个数应该是整数个数的一半。

那么,我们依据什么才能够非难康托的演绎推理呢?

我们或者抛弃实无穷的概念,甚至否认自然数集是一个自足的实体;

或者拒绝承认简明的相同基数定义,而把它看作是荒谬的。

但只要我们承认这两个前提,那么,就不可避免地会得出结论:

偶数的个数绝不少于自然数。

  同样,如果设Z={……-3,-2,-1,0,1,2,3,……},即所有整数(正数、负数和零)的集合,那么,我们会看到,N与Z也有相同的基数,因为它们可以构成如下一一对应关系:

  对于这一对应关系,我们可以进行检验,集合N中的每一个自然数n都与集合Z中的

相对应。

  据此,康托迈出了勇敢的一步。

他说,任何能够与集合N构成一一对应关系的集合都是可列或可数无穷集。

特别是,他引进了“超限”基数的新概念,用以表示可数集中元素的个数。

他选用希伯来文的第一个字母0(读作“阿列夫零”)来表示超限基数。

  康托通过对无穷集的研究,创造了一种新的数字和一种新的数字类型。

我们可以想象,他的许多同代人都会对这个异想天开的可怜虫摇头叹息。

然而,不要忘记在我们所假设的原始数学文化中,人们只能数到三。

在这种文化中,一个富有革新精神的天才也许会突发灵感,通过引入一个新的基数五来扩大原有数系:

如果一个集合的元素能够与她右手的手指一一对应,那么,她就可以说,这个集合包含了五个元素。

  这样一个定义是非常有效的,它提供了一个明确的方法,以确定一个集合在什么情况下具有五个元素(只要手指不受损伤)。

在这个意义上,她的手指就成为确定集合是否具有五个元素的标准参考点。

这一切看起来是非常合理的。

  而这恰恰是康托的证明方法,所不同的只是他采用自然数集合N作为扩大我们数系的基准。

对于他来说,N是基数为0的原型集合。

引入符号

  如果我们接下来讨论有理数集合Q,情形又会如何呢?

如前所述,有理数是处处稠密的。

在这个意义上说,有理数与整数不同,整数是一个紧跟一个,循规蹈矩地分布在数轴上的,其中的每一个数字都与前一个数字保持相同的距离。

实际上,在任何两个整数之间(比如在0与1之间),都有无限多的有理数。

因此,任何人都会猜想,有理数的个数远远超过自然数。

  

明方法是在有理数集与自然数集之间构成一一对应的关系。

为了弄清他是怎样构成这种对应关系的,我们把有理数排列成如下形式:

  注意第一列中所有数字的分子是1,第二列所有数字的分子是-1,等等;

而第一行中所有数字的分母为1,第二行所有数字的分母为2,依此类推。

总之,任何分数,都能够在这一排列中找到它的固定的归宿。

  这一排列包含了集合Q中的所有元素。

  现在,我们按照这一排列中箭头所示方向,列出集合Q的元

  素,由此便产生了以下对应关系:

个有理数相对应;

更令人吃惊的是,每一个有理数也将被一个且仅被一个自然数所指定。

根据康托的定义,我们可以直接得出结论:

有理数与自然数一样多。

  康托1874年论文中关于连续统不可数性的最初证明

  至此,似乎所有的无穷集都是可列的,也就是说,每一个无穷集都能与正整数构成一一对应的关系。

但是,在看到康托1874年的一篇论文后,数学界彻底放弃了这个一相情愿的念头。

这篇论文有一个平铺直叙的题目:

《论所有代数数集合的性质》。

在这篇论文中,康托明确地提出了不可数无穷集的问题。

  仅从文章平凡的标题来看,人们丝毫不会感到这篇论文的革命性。

这恰恰与美术界的根本变革形成了鲜明的对照,美术作品常常明显地表现出它的革新。

1874年,任何人,即便是门外汉,只要在巴黎看到过莫奈的作品,都会对他“印象派”的绘画方法感到震惊。

只需随意看一眼,也会从莫奈表现光的手法中看出他的作品与其前辈,如德拉克洛瓦或安格尔,有着明显的区别。

显然,莫奈作了某些根本的变革。

同是1874年,乔治·

康托在其划时代的数学论文中,开创了同样不乏革命性的事业。

然而,这一惊人的数学思想恰恰缺乏美术作品那样的直接冲击。

康托发现的不可数集是所有实数的集合。

实际上,他1874年的论文指出,没有任何实数区间(不论其长度多么小)能够与自然数集构成一一对应的关系。

他最初的证明使他进入了分析的王国,同时,这一证明需要借助某些相关的比较先进的数学工具。

然而,1891年,康托再次回到这个问题上来,提出了一个非常简单的证明。

我们下面将讨论这个证明。

伟大的定理:

  这里“连续统”一词的意思是指某一实数区间,我们可以用符号(a,b)来表示(图11.1),即

  (a,b)表示满足于不等式a<x<b的一切实数x的集合

  在以下的证明中,我们将要证明的不可数区间是(0,1),即所谓“单位区间”。

在这一区间的实数都可以写成无穷小数。

例如,

  ……出于技术上的原因,我们必须谨慎地避免采用两个

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2