翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx

上传人:b****4 文档编号:6430778 上传时间:2023-05-06 格式:DOCX 页数:30 大小:602.12KB
下载 相关 举报
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第1页
第1页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第2页
第2页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第3页
第3页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第4页
第4页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第5页
第5页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第6页
第6页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第7页
第7页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第8页
第8页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第9页
第9页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第10页
第10页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第11页
第11页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第12页
第12页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第13页
第13页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第14页
第14页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第15页
第15页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第16页
第16页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第17页
第17页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第18页
第18页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第19页
第19页 / 共30页
翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx

《翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx》由会员分享,可在线阅读,更多相关《翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx(30页珍藏版)》请在冰点文库上搜索。

翻译车辆空调系统的设计和暂态仿真aWord文档格式.docx

RTechnologies,Inc.

TerryJ.Hendricks

NationalRenewableEnergyLaboratory

ABSTRACT

Thispaperdescribestheneedfordynamic(transient)simulationofautomotiveairconditioningsystems,thereasonswhysuchsimulationsarechallenging,andtheapplicabilityofageneralpurposeoff-the-shelfthermohydraulicanalyzertoanswersuchchallengesAnoverviewofmodelingmethodsforthebasiccomponentsarepresented,alongwithrelevantapproximationsandtheireffectonspeedandaccuracyoftheresults.

THEMOTIVATION:

THENEEDFORDYNAMICMODELING

MajorDepartmentofEnergy(DoE)objectivesincludedevelopinginnovativetransportationtechnologiesandsystemsthatdecreasevehiclefuelconsumptionandemissionsacrossthenation,therebyreducingthenation'

srelianceonforeignoilconsumption.RecentchangestotheFederalTestProcedurehaveaddedSC03andUS06drivecyclestoformtheSupplementalFederalTestProcedure(STFP),withcorrespondingrequirementsforevaluating

vehicleemissionsduringadditionaldrivingconditions.Inparticular,theSC03drivecycleisspecificallyintendedtoevaluatevehicleemissionswhiletheairconditioning(A/C)

systemisoperatingintypicalhigh-temperature,highsolarloadconditions.TheUS06drivecycleisintendedtoevaluatevehicleemissionsduringmorehighspeed,highacceleration

conditions.

TheadditionoftheSC03drivecyclecreatesasignificantneedforbetterunderstandingtheimpactofdynamicconditions(i.e.,vehicleexternalenvironments,passengercompartment

environments,etc.)onthevehicleA/Csystemsandtheirdynamicresponsetotheseconditions.SincevehicleA/Csystemsrepresentthemajorauxiliaryloadontheengineoflight-dutypassengervehicles,sport-utilityvehicles(SUV),andheavy-dutyvehicles,theA/Csystemperformancehasadramaticeffectonfuelconsumptionandexhaustemissions.Recentstudies(Ref1)haveshownthat,duringtheSC03drivecycle,theaverageimpactoftheA/Csystemoverarangeoflight-dutyvehicleswastoincrease1)fuelconsumptionby28%,2)carbonmonoxideemissionsby71%,3)nitrogenoxideemissionsby81%,and4)non-methanehydrocarbonsby30%.

TheA/CsystemexperiencestransientconditionsthroughouttheSFTPdrivecyclesandduringtypicalcity/highwaydrivingpatternsaroundthecountry.Inparticular,theevaporator

load,compressorspeed,refrigerantflowrate,andheatexchangerairflowratescanbequitevariable.KnowledgeandbetterunderstandingofthetransientA/Csystembehavior,especiallytheintegratedinterdependenciesandstrongcouplingbetweensystemcomponents,iscriticaltounderstandingA/Csystemperformancerequirementsduringthesedrivecycles.TheremustbeincreasedemphasisonoptimizingtheintegratedA/Csystemdesignandperformance

underthesetransientconditions,ratherthansimplyfocusingonpeaksteady-stateconditions,tominimizeitsimpactonvehiclefueleconomyandemissionsacrossthespectrumofthenation'

svehiclefleet.

THEPROBLEM:

TRANSIENTSELF-DETERMINATIONOFPRESSURE

Rankinecyclesaretaughtineveryintroductoryundergraduatethermodynamiccourse,andthebasicvaporcompressioncycleusedinmostA/CsystemsisessentiallyareverseRankinecycle.Insuchsimpletreatises,pressuresarespecifiedandnoconsiderationisgiventoconservingworkingfluidmass.Inarealapplication,ofcourse,theA/Cunitischargedwithafixedmassofrefrigerant,andthehighandlowpressureswillvaryaswillthecoefficientofperformance(COP)oftheunit.Theaccuratepredictionofthesepressuresturnsouttoberathercomplicated.

Obviously,analyticmodelsofcompressorsandthrottlingdevicesmustpredictpressurerisesanddropsaccurately.Butitmaynotbeasobviousthatcomparativelyisobaricdevicessuchascondensers,evaporators,andtransportlineshaveaninfluenceontheresultingpressurelevels,because,withtheexceptionofthereceiver/drier,itisinthosecomponentsthattheamountofworkingfluidchargevariesthemost.

Atanyinstantaneousoperatingpoint,theenergyflowsthroughtheloopmustbalance(neglectingtransientthermalandthermodynamicstorageterms).Thismeansthattheheattransfercoefficients(anddegreeofsingle-phase“blockage”)inthecondensersandevaporatorsmustbecalculatedaccurately.Thisinturnmeansthattheregimesandthermodynamicqualitieswithinthecondensersandevaporatorsmustbecalculatedaccurately,conservingtotalchargemassinthesystem.

Topredicttheupperandloweroperatingpressuresatanysteadyoperatingpoint,ortotrackchangesinthosepressuresduringdynamiccycleoperation,requiresthattheanalyticmodelbeabletotrackandconservechargemass,andtodetermineitsdistribution.Becausetheresultingpressuresinturninfluencetheoperatingconditionswiththeevaporatorandcondenser,asurprisinglytightlycoupledanddetailedsolutionisrequiredtocorrectlypredict

theperformance。

SINDA/FLUINTOVERVIEW

UnderstandingsomeofthemodelingchoicespresentedinthispaperrequiresabriefoverviewofthenomenclatureandconceptsintheSINDA/FLUINTthermohydraulicanalyzer

(Ref1).

SINDA/FLUINTisusedtodesignandsimulatethermal/fluidsystemsthatcanberepresentedinnetworkscorrespondingtofinitedifference,finiteelement,and/orlumped

parameterequations.Inadditiontoconduction,convection,andradiationheattransfer,theprogramcanmodelsteadyorunsteadysingle-andtwo-phaseflownetworks,including

nonreactingmixturesandnonequilibriumphenomena.

Table1presentstheoverallorganizationofavailablemodelingtools.

SINDA(ThermalNetworks)–SINDAusesathermalnetworkapproach,breakingaproblemdownintopointsatwhichenergyisconserved(nodes),andintothepaths(conductors)throughwhichthesepointsexchangeenergyviaradiationandconduction.Whileoftenappliedasalumped-parametermodelingtool,theprogramcanalsobeusedtosolvethefinitedifference(FDM)orfiniteelement(FEM)equationsforconductioninappropriatelymeshed

shellsorsolids.Onecanemployfinitedifference,finiteelement,andarbitrary(lumpedparameter)nodesallwithinthesamemodel.

FLUINT(FluidNetworks)–FLUINTusesadifferenttypeofnetworkcomposedoflumpsandpaths,whichareanalogoustothermalnodesandconductors,butwhicharemuchmoresuitedtofluidsystemmodeling.Unlikethermalnetworks,fluidnetworksareabletosimultaneouslyconservemassandmomentumaswellasenergy.

Lumpsaresubdividedintotanks(finite-volumecontrolvolumes),junctions(zero-volumecontrolvolumes:

conservationpoints,instantaneouscontrolvolumes),andplena(boundarystates).Pathsaresubdividedintotubes(inertialducts),orconnectors(instantaneousflowpassagesincludingshort[zeroinertia]ducts,valves,etc.).

Inadditiontolumpsandpaths,therearethreeadditionalfluidnetworkelements:

ties,fties,andifaces.Tiesrepresentheattransferbetweenthefluidandthewall(i.e.,betweenFLUINTandSINDA).Ftiesor“fluidties”representheattransferwithinthefluiditself.Ifacesor“interfaceele-ments”representmovingboundariesbetweenadjacentcontrolvolumes.

FLUINTmodelscanbeconstructedthatemployfullytransientthermohydraulicsolutions(usingtanks),orthatperformpseudo-steadytransientsolutions(neglectingperhapsinertialeffectsandothermassandenergystoragetermsusingjunctions),orthatemploybothtechniquesatonce.Inotherwords,theengineerhastheabilitytoapproximateoridealizewherepossible,andtofocuscomputationalresourceswherenecessary.Aswillbedescribedlater,thesechoicesarecriticalforsuccessfulmodelingofvaporcompressioncycles.

Built-inSpreadsheetandUserLogic–Abuilt-inspreadsheetenablesuserstodefinecustom(andperhapsinterrelated)variablescalledregisters(Figure2).Userscanalsodefinecomplexself-resolvinginterrelationshipsbetweeninputs,andalsobetweeninputsandoutputs.Thisspreadsheetallowsrapidandconsistentmodelchanges,minimizestheneedforuserlogic,andmakesparametricandsensitivitystudieseasytoperform.

Duringprogramoperation,concurrentlyexecutedlogicblocksarealsoavailable,parallelingthespreadsheetsystem.Inboththespreadsheetandthelogicblocks,full

accessisprovidednotonlytothebasicmodelingparameters(dimensions,properties,lossfactors,etc.),butalsotoprogramcontrolparametersandtounderlyingcorrelations

forheattransfer,pressuredrop,fluidproperties,etc.

WORKINGFLUIDPROPERTIES

Becauseoftherangeofpressuresinvolvedandthepresenceoftwo-phaseflow,vaporcompressioncycleanalysesrequireafull-rangesetofpropertieswiththevaporphase

treatedasareal(notperfect)gas.ForR134a,severalsuchsetsofpropertydataexist,buttheonemostcommonlyemployedisatabulardescriptioncreatedfromNIST’sREFPROPdatabase(Ref3).

PropertiesforotherfluidsofinteresttoA/CsystemsareavailableincludingHFCs,HCFCs,supercriticalcarbondioxide,andmoistair(forpassengercompartmentorenvironmental

psychrometricanalyses).Also,noncondensiblegasesandnonvolatileliquids(e.g.,oils)canbeaddedtothemixture.

However,forthepurposesofthispaper,pureR134aisassumedunlessotherwisenoted.

VAPORCOMPRESSIONCYCLECOMPONENTS

Thissectiondescribesthemaincomponentswithinatypicalvaporcompressioncycle.Abuilding-blockapproachallowsboththearrangementofthecomponentsandthemethodsofmodelingthemtobevariable.

COMPRESSOR

Aswithalldevices,therearemanywaystomodelacompressordependingontheinformationavailableandthedetaildesi

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2