北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc

上传人:wj 文档编号:6459906 上传时间:2023-05-06 格式:DOC 页数:32 大小:564.50KB
下载 相关 举报
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第1页
第1页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第2页
第2页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第3页
第3页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第4页
第4页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第5页
第5页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第6页
第6页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第7页
第7页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第8页
第8页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第9页
第9页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第10页
第10页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第11页
第11页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第12页
第12页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第13页
第13页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第14页
第14页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第15页
第15页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第16页
第16页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第17页
第17页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第18页
第18页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第19页
第19页 / 共32页
北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc_第20页
第20页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc

《北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc》由会员分享,可在线阅读,更多相关《北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc(32页珍藏版)》请在冰点文库上搜索。

北师大版八年级数学上册完全复习知识点+典型例题Word文件下载.doc

旋转不改变图形大小和形状,改变了图形的位置;

经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;

任意一对对应点与旋转中心的连线所成的角都是旋转角;

对应点到旋转中心的距离相等。

3.作平移图与旋转图。

第四章四边形性质的探索

特殊

菱形

矩形

正方形

多边形

三角形

等腰三角形、直角三角形

四边形

梯形

等腰梯形

边数多于4的多边形

正多边形

平行四边形

1.多边形的分类:

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:

两组对边分别平行的四边形叫做平行四边形。

平行四边形的对边平行且相等;

对角相等,邻角互补;

对角线互相平分。

两条对角线互相平分的四边形是平行四边形;

一组对边平行且相等的四边形是平行四边形;

两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形。

(2)菱形:

一组邻边相等的平行四边形叫做菱形。

菱形的四条边都相等;

对角线互相垂直平分,每一条对角线平分一组对角。

四条边都相等的四边形是菱形;

对角线互相垂直的平行四边形是菱形;

一组邻边相等的平行四边形是菱形;

对角线互相平分且垂直的四边形是菱形。

菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1*L2/2)。

(3)矩形:

有一个内角是直角的平行四边形叫做矩形。

矩形的对角线相等;

四个角都是直角。

对角线相等的平行四边形是矩形;

有一个角是直角的平行四边形是矩形。

直角三角形斜边上的中线等于斜边长的一半;

在直角三角形中30°

所对的直角边是斜边的一半。

(4)正方形:

一组邻边相等的矩形叫做正方形。

正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形;

对角线相等的梯形是等腰梯形;

对角互补的梯形是等腰梯形。

(6)三角形中位线:

连接三角形相连两边重点的线段。

性质:

平行且等于第三边的一半

3.多边形的内角和公式:

(n-2)*180°

多边形的外角和都等于。

4.中心对称图形:

在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

第五章位置的确定

1.直角坐标系及坐标的相关知识。

2.点的坐标间的关系:

如果点A、B横坐标相同,则∥轴;

如果点A、B纵坐标相同,则∥轴。

3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;

将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;

将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。

第六章一次函数

1.一次函数定义:

若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。

当时称是的正比例函数。

正比例函数是特殊的一次函数。

2.作一次函数的图象:

列表取点、描点、连线,标出对应的函数关系式。

3.正比例函数图象性质:

经过;

>0时,经过一、三象限;

<0时,经过二、四象限。

4.一次函数图象性质:

(1)当>0时,随的增大而增大,图象呈上升趋势;

当<0时,随的增大而减小,图象呈下降趋势。

(2)直线与轴的交点为,与轴的交点为。

(3)在一次函数中:

>0,>0时函数图象经过一、二、三象限;

>0,<0时函数图象经过一、三、四象限;

<0,>0时函数图象经过一、二、四象限;

<0,<0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的值相等时,其图象平行;

当它们的值不等时,其图象相交;

当它们的值乘积为时,其图象垂直。

4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

5.运用一次函数的图象解决实际问题。

第七章二元一次方程组

1.二元一次方程及二元一次方程组的定义。

2.解方程组的基本思路是消元,消元的基本方法是:

①代入消元法;

②加减消元法;

③图象法。

3.方程组解应用题的关键是找等量关系。

4.解应用题时,按设、列、解、答四步进行。

5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

第八章数据的代表

1.算术平均数与加权平均数的区别与联系:

算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

2.中位数和众数:

中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。

众数指的是一组数据中出现次数最多的那个数据。

应知应会的知识点

因式分解

1.因式分解:

把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;

注意:

因式分解与乘法是相反的两个转化.

2.因式分解的方法:

常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:

系数的最大公约数·

相同因式的最低次幂.

注意公式:

a+b=b+a;

a-b=-(b-a);

(a-b)2=(b-a)2;

(a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式:

a2-b2=(a+b)(a-b);

(2)完全平方公式:

a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:

一提取、二公式、三分组、四十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:

(1)换位整理,加括号或去括号整理;

(2)提负号;

(3)全变号;

(4)换元;

(5)配方;

(6)把相同的式子看作整体;

(7)灵活分组;

(8)提取分数系数;

(9)展开部分括号或全部括号;

(10)拆项或补项.

7.完全平方式:

能化为(m+n)2的多项式叫完全平方式;

对于二次三项式x2+px+q,有“x2+px+q是完全平方式Û

”.

分式

1.分式:

一般地,用A、B表示两个整式,A÷

B就可以表示为的形式,如果B中含有字母,式子叫做分式.

2.有理式:

整式与分式统称有理式;

即.

3.对于分式的两个重要判断:

(1)若分式的分母为零,则分式无意义,反之有意义;

(2)若分式的分子为零,而分母不为零,则分式的值为零;

若分式的分子为零,而分母也为零,则分式无意义.

4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:

在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

5.分式的约分:

把一个分式的分子与分母的公因式约去,叫做分式的约分;

分式约分前经常需要先因式分解.

6.最简分式:

一个分式的分子与分母没有公因式,这个分式叫做最简分式;

分式计算的最后结果要求化为最简分式.

7.分式的乘除法法则:

.

8.分式的乘方:

.

9.负整指数计算法则:

(1)公式:

a0=1(a≠0),a-n=(a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式:

,;

(4)公式:

(-1)-2=1,(-1)-3=-1.

10.分式的通分:

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;

分式的通分前要先确定最简公分母.

11.最简公分母的确定:

系数的最小公倍数·

相同因式的最高次幂.

12.同分母与异分母的分式加减法法则:

.

13.含有字母系数的一元一次方程:

在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:

在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

14.公式变形:

把一个公式从一种形式变换成另一种形式,叫做公式变形;

公式变形的本质就是解含有字母系数的方程.特别要注意:

字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15.分式方程:

分母里含有未知数的方程叫做分式方程;

以前学过的,分母里不含未知数的方程是整式方程.

16.分式方程的增根:

在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;

在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

17.分式方程验增根的方法:

把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;

若值不为零,求出的根是原方程的解;

由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

18.分式方程的应用:

列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

数的开方

1.平方根的定义:

若x2=a,那么x叫a的平方根,(即a的平方根是x);

(1)a叫x的平方数,

(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

2.平方根的性质:

(1)正数的平方根是一对相反数;

(2)0的平方根还是0;

(3)负数没有平方根.

3.平方根的表示方法:

a的平方根表示为和.注意:

可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:

正数a的正的平方根叫a的算术平方根,表示为.注意:

0的算术平方根还是0.

5.三个重要非负数:

a2≥0,|a|≥0,≥0.注意:

非负数之和为0,说明它们都是0.

6.两个重要公式:

(1);

(a≥0)

(2).

7.立方根的定义:

若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:

(1)a叫x的立方数;

(2)a的立方根表示为;

即把a开三次方.

8.立方根的性质:

(1)正数的立方根是一个正数;

(2)0的立方根还是0;

(3)负数的立方根是一个负数.

9.立方根的特性:

10.无理数:

无限不循环小数叫做无理数.注意:

p和开方开不尽的数是无理数.

11.实数:

有理数和无理数统称实数.

12.实数的分类:

(1)

(2).

13.数轴的性质:

数轴上的点与实数一一对应.

14.无理数的近似值:

实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;

如果题目有近似要求,则结果应该用无理数的近似值表示.注意:

(1)近似计算时,中间过程要多保留一位;

(2)要求记忆:

.

几何A级概念:

(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)

几何表达式举例:

(1)∵AD平分∠BAC

∴∠BAD=∠CAD

(2)∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

(1)∵AD是三角形的中线

∴BD=CD

(2)∵BD=CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

(1)∵AD是ΔABC的高

∴∠ADB=90°

(2)∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

(1)∵AB+BC>AC

∴……………

(2)∵AB-BC<AC

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形.(如图)

(1)∵ΔABC是等腰三角形

∴AB=AC

(2)∵AB=AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形.(如图)

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2)∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°

(2)直角三角形的两个锐角互余;

(3)三角形的一个外角等于和它不相邻的两个内角的和;

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1)

(2)(3)(4)

(1)∵∠A+∠B+∠C=180°

∴…………………

(2)∵∠C=90°

∴∠A+∠B=90°

(3)∵∠ACD=∠A+∠B

(4)∵∠ACD>∠A

8.直角三角形的定义:

有一个角是直角的三角形叫直角三角形.(如图)

(1)∵∠C=90°

∴ΔABC是直角三角形

(2)∵ΔABC是直角三角形

∴∠C=90°

9.等腰直角三角形的定义:

两条直角边相等的直角三角形叫等腰直角三角形.(如图)

CA=CB

∴ΔABC是等腰直角三角形

(2)∵ΔABC是等腰直角三角形

(1)∵ΔABC≌ΔEFG

∴AB=EF………

(2)∵ΔABC≌ΔEFG

∴∠A=∠E………

11.全等三角形的判定:

“SAS”“ASA”“AAS”“SSS”“HL”.(如图)

(1)

(2)

(3)

(1)∵AB=EF

∵∠B=∠F

又∵BC=FG

∴ΔABC≌ΔEFG

(2)………………

(3)在RtΔABC和RtΔEFG中

∵AB=EF

又∵AC=EG

∴RtΔABC≌RtΔEFG

12.角平分线的性质定理及逆定理:

(1)在角平分线上的点到角的两边距离相等;

(2)到角的两边距离相等的点在角平分线上.(如图)

(1)∵OC平分∠AOB

又∵CD⊥OACE⊥OB

∴CD=CE

(2)∵CD⊥OACE⊥OB

又∵CD=CE

∴OC是角平分线

13.线段垂直平分线的定义:

垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)

(1)∵EF垂直平分AB

∴EF⊥ABOA=OB

(2)∵EF⊥ABOA=OB

∴EF是AB的垂直平分线

14.线段垂直平分线的性质定理及逆定理:

(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;

(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)

(1)∵MN是线段AB的垂直平分线

∴PA=PB

(2)∵PA=PB

∴点P在线段AB的垂直平分线上

15.等腰三角形的性质定理及推论:

(1)等腰三角形的两个底角相等;

(即等边对等角)(如图)

(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;

(3)等边三角形的各角都相等,并且都是60°

.(如图)

(1)

(2)(3)

(1)∵AB=AC

∴∠B=∠C

(2)∵AB=AC

又∵∠BAD=∠CAD

∴BD=CD

AD⊥BC

………………

(3)∵ΔABC是等边三角形

∴∠A=∠B=∠C=60°

16.等腰三角形的判定定理及推论:

(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;

(即等角对等边)(如图)

(2)三个角都相等的三角形是等边三角形;

(3)有一个角等于60°

的等腰三角形是等边三角形;

(4)在直角三角形中,如果有一个角等于30°

,那么它所对的直角边是斜边的一半.(如图)

(1)

(2)(3)(4)

(1)∵∠B=∠C

(2)∵∠A=∠B=∠C

(3)∵∠A=60°

又∵AB=AC

(4)∵∠C=90°

∠B=30°

∴AC=AB

17.关于轴对称的定理

(1)关于某条直线对称的两个图形是全等形;

(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)

(1)∵ΔABC、ΔEGF关于MN轴对称

∴ΔABC≌ΔEGF

(2)∵ΔABC、ΔEGF关于MN轴对称

∴OA=OEMN⊥AE

18.勾股定理及逆定理:

(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;

(2)如果三角形的三边长有下面关系:

a2+b2=c2,那么这个三角形是直角三角形.(如图)

(1)∵ΔABC是直角三角形

∴a2+b2=c2

(2)∵a2+b2=c2

19.RtΔ斜边中线定理及逆定理:

(1)直角三角形中,斜边上的中线是斜边的一半;

(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)

∵ΔABC是直角三角形

∵D是AB的中点

∴CD=AB

(2)∵CD=AD=BD

几何B级概念:

(要求理解、会讲、会用,主要用于填空和选择题)

一基本概念:

三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.

二常识:

1.三角形中,第三边长的判断:

另两边之差<第三边<另两边之和.

2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:

三角形的角平分线、中线、高线都是线段.

3.如图,三角形中,有一个重要的面积等式,即:

若CD⊥AB,BE⊥CA,则CD·

AB=BE·

CA.

4.三角形能否成立的条件是:

最长边<另两边之和.

5.直角三角形能否成立的条件是:

最长边的平方等于另两边的平方和.

6.分别含30°

、45°

、60°

的直角三角形是特殊的直角三角形.

7.如图,双垂图形中,有两个重要的性质,即:

(1)AC·

CB=CD·

AB;

(2)∠1=∠B,∠2=∠A.

8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.

9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.

10.等边三角形是特殊的等腰三角形.

11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.

12.符合“AAA”“SSA”条件的三角形不能判定全等.

13.几何习题经常用四种方法进行分析:

(1)分析综合法;

(2)方程分析法;

(3)代入分析法;

(4)图形观察法.

14.几何基本作图分为:

(1)作线段等于已知线段;

(2)作角等于已知角;

(3)作已知角的平分线;

(4)过已知点作已知直线的垂线;

(5)作线段的中垂线;

(6)过已知点作已知直线的平行线.

15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.

16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;

每步作图都应该是几何基本作图.

17.几何画图的类型:

(1)估画图;

(2)工具画图;

(3)尺规画图.

※18.几何重要图形和辅助线:

(1)选取和作辅助线的原则:

①构造特殊图形,使可用的定理增加;

②一举多得;

③聚合题目中的分散条件,转移线段,转移角;

④作辅助线必须符合几何基本作图.

(2)已知角平分线.(若BD是角平分线)

①在BA上截取BE=BC构造全等,转移线段和角;

②过D点作DE∥BC交AB于E,构造等腰三角形.

(3)已知三角形中线(若AD是BC的中线)

①过D点作DE∥AC交AB于E,构造中位线;

②延长AD到E,使DE=AD

连结CE构造全等,转移线段和角;

③∵AD是中线

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2