二次函数必背知识点(精辟)Word格式文档下载.doc

上传人:wj 文档编号:6461537 上传时间:2023-05-06 格式:DOC 页数:17 大小:1.20MB
下载 相关 举报
二次函数必背知识点(精辟)Word格式文档下载.doc_第1页
第1页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第2页
第2页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第3页
第3页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第4页
第4页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第5页
第5页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第6页
第6页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第7页
第7页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第8页
第8页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第9页
第9页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第10页
第10页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第11页
第11页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第12页
第12页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第13页
第13页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第14页
第14页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第15页
第15页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第16页
第16页 / 共17页
二次函数必背知识点(精辟)Word格式文档下载.doc_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

二次函数必背知识点(精辟)Word格式文档下载.doc

《二次函数必背知识点(精辟)Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《二次函数必背知识点(精辟)Word格式文档下载.doc(17页珍藏版)》请在冰点文库上搜索。

二次函数必背知识点(精辟)Word格式文档下载.doc

9.抛物线中,的作用

(1)决定开口方向及开口大小,这与中的完全一样.

(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线

,故:

①时,对称轴为轴;

②(即、同号)时,对称轴在轴左侧;

③(即、异号)时,对称轴在轴右侧.

(3)的大小决定抛物线与轴交点的位置.

当时,,∴抛物线与轴有且只有一个交点(0,):

①,抛物线经过原点;

②,与轴交于正半轴;

③,与轴交于负半轴.

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.

10.几种特殊的二次函数的图像特征如下:

函数解析式

开口方向

对称轴

顶点坐标

当时

开口向上

开口向下

(轴)

(0,0)

(0,)

(,0)

(,)

()

11.用待定系数法求二次函数的解析式

(1)一般式:

.已知图像上三点或三对、的值,通常选择一般式.

(2)顶点式:

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:

已知图像与轴的交点坐标、,通常选用交点式:

.

12.直线与抛物线的交点

(1)轴与抛物线得交点为(0,).

(2)与轴平行的直线与抛物线有且只有一个交点(,).

(3)抛物线与轴的交点

二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点抛物线与轴相交;

②有一个交点(顶点在轴上)抛物线与轴相切;

③没有交点抛物线与轴相离.

(4)平行于轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.

(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:

①方程组有两组不同的解时与有两个交点;

②方程组只有一组解时与只有一个交点;

③方程组无解时与没有交点.

(6)抛物线与轴两交点之间的距离:

若抛物线与轴两交点为,由于、是方程的两个根,故

考点一、二次函数的概念和图像(3~8分)

1、二次函数的概念

一般地,如果,那么y叫做x的二次函数。

叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:

①有开口方向;

②有对称轴;

③有顶点。

3、二次函数图像的画法

五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。

由C、M、D三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式(10~16分)

二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。

如果没有交点,则不能这样表示。

考点三、二次函数的最值(10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。

如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;

若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;

如果在此范围内,y随x的增大而减小,则当时,,当时,。

考点四、二次函数的性质(6~14分)1、二次函数的性质

函数

二次函数

图像

a>

a<

y

0x

y

0x

性质

(1)抛物线开口向上,并向上无限延伸;

(2)对称轴是x=,顶点坐标是(,);

(3)在对称轴的左侧,即当x<

时,y随x的增大而减小;

在对称轴的右侧,即当x>

时,y随x的增大而增大,简记左减右增;

(4)抛物线有最低点,当x=时,y有最小值,

(1)抛物线开口向下,并向下无限延伸;

时,y随x的增大而增大;

时,y随x的增大而减小,简记左增右减;

(4)抛物线有最高点,当x=时,y有最大值,

2、二次函数中,的含义:

表示开口方向:

>

0时,抛物线开口向上,,,<

0时,抛物线开口向下

与对称轴有关:

对称轴为x=

表示抛物线与y轴的交点坐标:

(0,)

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。

当>

0时,图像与x轴有两个交点;

当=0时,图像与x轴有一个交点;

当<

0时,图像与x轴没有交点。

补充:

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

y

如图:

点A坐标为(x1,y1)点B坐标为(x2,y2)

则AB间的距离,即线段AB的长度为A

0x

B

2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)

3、直线斜率:

b为直线在y轴上的截距

4、直线方程:

一般两点斜截距

1,一般一般直线方程ax+by+c=0

2,两点由直线上两点确定的直线的两点式方程,简称两点式:

--最最常用,记牢

3,点斜知道一点与斜率

4,斜截斜截式方程,简称斜截式:

y=kx+b(k≠0)

5,截距由直线在轴和轴上的截距确定的直线的截距

式方程,简称截距式:

记牢可大幅提高运算速度

5、设两条直线分别为,:

若,则有且。

6、点P(x0,y0)到直线y=kx+b(即:

kx-y+b=0)的距离:

对于点P(x0,y0)到直线滴一般式方程ax+by+c=0滴距离有

常用记牢

7,二次函数图像与性质口诀:

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;

顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;

顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。

上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

二次函数的基本形式

1.二次函数基本形式:

的性质:

结论:

a的绝对值越大,抛物线的开口越小。

总结:

的符号

向上

时,随的增大而增大;

时,随的增大而减小;

时,有最小值.

向下

时,有最大值.

2.的性质:

上加下减。

同左上加,异右下减

3.的性质:

左加右减。

X=h

4.的性质:

二次函数图象的平移

1.平移步骤:

⑴将抛物线解析式转化成顶点式,确定其顶点坐标;

⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

2.平移规律

在原有函数的基础上“值正右移,负左移;

值正上移,负下移”.

概括成八个字“同左上加,异右下减”.

三、二次函数与的比较

请将利用配方的形式配成顶点式。

请将配成。

从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.

四、二次函数图象的画法

五点绘图法:

利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:

顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:

开口方向,对称轴,顶点,与轴的交点,与轴的交点.

五、二次函数的性质

1.当时,抛物线开口向上,对称轴为,顶点坐标为.

当时,随的增大而减小;

当时,随的增大而增大;

当时,有最小值.

2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;

当时,有最大值.

六、二次函数解析式的表示方法

1.一般式:

(,,为常数,);

2.顶点式:

3.两根式:

(,,是抛物线与轴两交点的横坐标).

注意:

任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

七、二次函数的图象与各项系数之间的关系

1.二次项系数

二次函数中,作为二次项系数,显然.

⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;

⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.

总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.

2.一次项系数

在二次项系数确定的前提下,决定了抛物线的对称轴.

⑴在的前提下,

当时,,即抛物线的对称轴在轴左侧;

ab同号同左上加

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的右侧.a,b异号异右下减

⑵在的前提下,结论刚好与上述相反,即

当时,,即抛物线的对称轴在轴右侧;

a,b异号异右下减

当时,,即抛物线对称轴在轴的左侧.ab同号同左上加

总结起来,在确定的前提下,决定了抛物线对称轴的位置.

同左上加异右下减

3.常数项

⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;

⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;

⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.

总结起来,决定了抛物线与轴交点的位置.

总之,只要都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1.已知抛物线上三点的坐标,一般选用一般式;

2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;

4.已知抛物线上纵坐标相同的两点,常选用顶点式.

二、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1.关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

2.关于轴对称

3.关于原点对称

关于原点对称后,得到的解析式是;

4.关于顶点对称

关于顶点对称后,得到的解析式是;

关于顶点对称后,得到的解析式是.

5.关于点对称

关于点对称后,得到的解析式是

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

二次函数与一元二次方程:

1.二次函数与一元二次方程的关系(二次函数与轴交点情况):

一元二次方程是二次函数当函数值时的特殊情况.

图象与轴的交点个数:

①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.

②当时,图象与轴只有一个交点;

③当时,图象与轴没有交点.

当时,图象落在轴的上方,无论为任何实数,都有;

当时,图象落在轴的下方,无论为任何实数,都有.

2.抛物线的图象与轴一定相交,交点坐标为,;

3.二次函数常用解题方法总结:

⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;

⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;

⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.

抛物线与轴有两个交点

二次三项式的值可正、可零、可负

一元二次方程有两个不相等实根

抛物线与轴只有一个交点

二次三项式的值为非负

一元二次方程有两个相等的实数根

抛物线与轴无交点

二次三项式的值恒为正

一元二次方程无实数根.

⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;

下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

图像参考:

17

相信你会成功。

加油!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2