代数变形中常用的技巧Word文档格式.doc

上传人:wj 文档编号:6855769 上传时间:2023-05-07 格式:DOC 页数:11 大小:531KB
下载 相关 举报
代数变形中常用的技巧Word文档格式.doc_第1页
第1页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第2页
第2页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第3页
第3页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第4页
第4页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第5页
第5页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第6页
第6页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第7页
第7页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第8页
第8页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第9页
第9页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第10页
第10页 / 共11页
代数变形中常用的技巧Word文档格式.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

代数变形中常用的技巧Word文档格式.doc

《代数变形中常用的技巧Word文档格式.doc》由会员分享,可在线阅读,更多相关《代数变形中常用的技巧Word文档格式.doc(11页珍藏版)》请在冰点文库上搜索。

代数变形中常用的技巧Word文档格式.doc

=0

例2:

分解因式

①(1-x2)(1-y2)-4xy

②x4+y4+x2y2

本题的两个小题,若按通则变形,则困难重重,不知从何下手,但从其含平方的项来研究,考虑应用配方法会使变形迎刃而解。

①题先将括号展开,并把-4xy拆成-2xy和-2xy,再分组就可以配成完全平方式。

②题用添项、减项法加上x2y2再减去x2y2,即可配方,然后再进行变形分解。

①原式=1-y2-x2+x2y2-2xy-2xy

=(1-2xy+x2y2)-(x2+2xy+y2)

=(1-xy)2-(x+y)2

=(1-xy+x+y)(1-xy-x-y)

②原式=x4+y4+x2y2+x2y2-x2y2

=(x2+y2)2-x2y2

=(x2+y2+xy)(x2+y2-xy)

以上两例充分说明了,配方法、因式分解法、换元法都是恒等变形的方法与基础,它们都是学习数学的有力工具,是解决数学问题的武器。

因此,这些变形技巧必须熟练掌握。

二、分式变形

众所周知,对学生而言,分式的变形较为复杂,也很讲究技巧。

通分化简是常规方法,但很多涉及分式的问题仅此而已是不够的,还需按既定的目标逆向变通,这时将分式分解成部分分式、分离常数、分子变位等便成了特殊的技巧,灵活应用这些变形技巧便会使问题迎刃而解。

有关分式的计算、化简、求值、证明,常常采用分式的变形技巧。

(一)将已知条件变形,再直接代入

例:

已知=a,=b,=c,且x+y+z≠0,试求++的值。

此题若按常规方法,把已知条件直接代入所求进行计算,计算会很复杂,也不容易求得正确答案。

通过观察已知和未知的式子,考虑将已知条件进行变形,再整改代入未知中去,计算起来比较简单。

因此,对已知条件进行变形也是非常必要的。

由已知得1+a=1+=

所以=,同理=,=

所以原式=++==1

(二)应用比例的基本性质进行恒等变形

已知==,求的值。

由已知条件知a≠0,b≠0,把已知条件中的等式变形并利用等比性质消去b,得

=====1

∴a=3b

∴原式===

(三)利用倒数知识进行恒等变形

已知a、b、c为实数,且=,=,=,求的值。

显然a、b、c均不为零,故将三个条件分式两边分别取倒数,得:

=3,=4,=5

再逆用分式加法法则变形得:

+=3,+=4,+=5

三式相加,得++=6,再通分变形得=6,两边取倒数得=,∴原式=

本题多次应用了通分,逆用通分,取倒数等恒等变形,使问题得到了解决,说明这些方法都是代数变形的重要方法,这些技巧应理解掌握。

(四)利用常值代换进行恒等变形

已知abc=1,求++的值。

∵abc=1

∴原式=++

==1

本题的解法很巧,若将所求通分化简,再代入已知或将已知变形再代入所求都不易求出结果。

习惯上是将字母代换成数,而此题是将数代换成字母,反而收效较好。

因此,常值代换也是恒等变形的重要技巧。

(五)利用设比例系数进行恒等变形

设===k(k≠0),则x=(a-b)k,y=(b-c)k,z=(c-a)k

∴原式=0

此变形是解有关等比问题的重要技巧。

(六)利用添项拆项进行恒等变形

已知abc≠0,a+b+c=0,求a(+)+b(+)+c(+)的值。

由abc≠0,知++=3,故

原式=a(++)+b(++)+c(++)-3

=(a+b+c)(++)-3=-3

(七)利用运算定律进行恒等变形

求值

(+++…+)+(+++…+)+(+++…+)+…+(+)=

原式=+(+)+(++)+…+(++…+++)

=+++…+=(1+2+3+…+59)

=885

(八)利用整体代换思想进行变形

已知x2-3x+1=0,求x3+1/x3=3的值。

此题若用常规方法先求出x的值,再代入x3+1/x3=3中进行计算是很繁的,如果注意到运用立方和公式及整体代换进行变形,问题就很简单了。

由x2-3x+1=0,可知x+=3,故

原式=(x+)[(x+)2-3]=3(32-3)=18

本题还运用了配方,等式两边除以同一个不为零的数的变形技巧,这样做的目的是使已知条件与所求式之间的关系更加明朗化,便于代入,使运算更简便。

(九)利用逆用通分进行恒等变形

化简++…+

这类问题在通常情况下是整体通分,但本题这样做显然很繁,若在每个分式中逆用通分进行“裂项”的恒等变形,则十分简捷。

原式=-+-+…+-

=-=

(十)利用分离常数的方法进行恒等变形

解方程+=+

如果按照常规思路整体去分母,显然运算很繁杂,若采用分段化简,分离常数,可化繁为简。

原方程可化为

1++1+=1++1+

即+=+

再进行变形得-=-

∴=

∴x=8

(十一)利用换元再约简的方法进行恒等变形

约分是分式化简的重要手段之一。

这种变形技巧贯穿整个分式的学习过程中。

化简

设=x,则

原式===

(十二)利用主元代入及消元思想进行恒等变形

若4x-3y-6z=0,x+2y-7z=0,则

等于()

(A)(B)(C)-15(D)-13

4x-3y=6z

x+2y=7z

以x、y为主元,由已知得

利用消元变形求得x=3z,y=2z

∴原式==-13故选(D)

由以上的论述可知:

分式的变形一般有三种思路,先变形条件,以便运用;

先化简待求式,这是为了利用条件;

将条件和待求式同时变形,容易看出二者的关系。

也就更容易找到变形技巧,使变形简单明了,更具可操作性。

三、根式变形

有关根式的计算、比较大小、化简、求值等,经常应用到根式的变形技巧,特别是二次根式的运算,它是中学代数中的一个难点,不少题目用常规方法去解比较繁琐,所以解题中要根据题目的特点,巧用一些运算技巧,才能达到事半功倍的效果。

(一)巧用运算性质进行恒等变形

计算(+)2004(-)2004(-)

逆用运算性质,再用平方差公式

原式=(+)2004(-)2004(-)

=[(+)(-)]2004(-)

=(6-5)2004(-)

=-

(二)巧用因式分解进行恒等变形

计算(++)(+-)

原式=(++)·

·

(+-)

[(+)2-8]=·

=30

(三)利用分母有理化进行恒等变形

计算

原式

=

===

(四)巧用平方进行恒等变形

∵()2=

==2

又∵>

(五)利用拆项技巧进行恒等变形

原式=

==

(六)利用换元技巧进行恒等变形

设,,则

===3

(七)利用配方法进行恒等变形

本题若采用分母有理化,计算会很复杂,若采用将分子配方,再分解因式后,与分母约分的方法会很简单。

原式==

(八)利用分子有理化进行恒等变形

不求根式的值,比较与的大小。

==

==

∵>

>

∴<

以上所述的这些二次根式的变形技巧,在解决二次根式的问题时,有很大的用处,因此,它作为一种代数变形技巧应被很好的掌握。

四、指数变形

有关指数的变形,一般都是利用幂运算法则进行较简便,而对一些比较大小的题目,就更讲究变形的技巧,主要是将底数变了相同,或将指数变了相同。

(一)放缩变形

设a=19,b=(999991),则a-b是()

(A)不大于-1的数(B)不小于1的数

(C)绝对值大于0且小于1的数(D)0

∵b=(999991)<

(19×

8)=192

a=1991=1976·

1915

∴a-b>

1976(1915-257)>

1976(1615-257)=1976(260-257)

=1976·

260(8-1)>

1

故选(B)

(二)利用开方进行变形

350,440,530的大小关系为()

(A)350<

440<

530(B)530<

350<

440

(C)530<

350(D)440<

530<

350

∵=35=243,=44=256,=53=125

∴<

<

∴530<

(三)利用乘方进行变形

设m=(),n=(),p=(),则m、n、p的大小关系是()

(A)m<

n<

p(B)m<

p<

n(C)n<

m(D)p<

m

∵m20=()=p20=()=

∴m20>

p20∴m>

p

又∵p12=()=n12=()=

∴p12>

n12

∴p>

n

∴m>

p>

(四)利用求商进行变形

已知a=2255,b=3344,c=5533,d=6622,则a、b、c、d的大小关系是()

(A)a>

b>

c>

d(B)a>

d>

c

(C)b>

a>

d(D)a>

c

==()=()>

故选(A)

上述四例充分说明了,指数变形技巧在解题中的作用和地位,离开了这些变形技巧,解题思路就会受阻,解题无从下手,因此变形技巧在解题中起着无足轻重的作用。

五、对数变形

在对数式的恒等变形中,应注意真数与底数间的相互关系,灵活利用运算法则进行化简和计算。

对数的变形主要考虑换底和底数的选择。

讨论函数f(x)=logax(bx)(b>

0)在定义域内的单调性,并证明你的结论。

直接利用单调性的定义进行探索,变形极易受阻,所以,利用对数换底公式进行变形,可供选择的底数有a、b和10,但a、b未完全具备对数底数的资格,故选择以10为底进行变形。

f(x)==1+

据lgb-lga>

0及复合函数的“同增异减”法则知,原函数在区间(0,)和区间(,+∞)上均为减函数。

由此便可知本例的答案。

六、复数变形

复数的变形技巧对解题的繁简有着决定的作用,比较典型的有三角变形,代数变形,运用模与共轭的性质进行变形,运用±

i虚根进行变形。

已知Z1,Z2是两个不相等的非零复数,设α=Z1+Z2,β=Z1-Z2。

(1)若是纯虚数,求证:

|Z1|=|Z2|

(2)若||+()=0,试判断||与||的大小关系。

证明:

(1)∵是纯虚数

∴,即

将α=Z1+Z2,β=Z1-Z2代入便可变形出|Z1|=|Z2|。

(2)由||+()=0得,+=0

∵Z1,Z2非零,所以=0,从而

||2=

同理可得||2=,故||=||

代数恒等变形必须根据运算法则和运算律进行,必须遵循运算法则,并按运算法则在其定义域内进行。

变形要保证正确合理,推理运算要简明,避免繁杂,变形还要实用,具有可操作性。

上面所论述的六大类二十多种变形技巧都能符合代数变形的基本要求,都从不同的侧面说明了代数变形的技巧。

总之,代数变形的方法与技巧远远不止于以上这些,但上述几种是最基础的,最本质的,也是最常用的变形技巧,若在平时的学习及教学中,能留意用上这些变形技巧,并长期积累与消化,对我们提高分析问题与解决问题的能力是很有好处的,同时也就有良好的思维品质形成。

本文参考文献

【1】董开福中学数学教材分析,云南教育出版社1999年1月第1版

【2】钱双平林瑛数学解题方法论云南科技出版社2000年4月第1版

指导教师评语

该文通过大量实例论述了初等代数变形中的解题技巧。

论文内容正确,语言流畅,论述严谨,格式规范。

指导教师:

林瑛

11

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2