matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx

上传人:b****4 文档编号:7011956 上传时间:2023-05-07 格式:DOCX 页数:24 大小:881.21KB
下载 相关 举报
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第1页
第1页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第2页
第2页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第3页
第3页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第4页
第4页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第5页
第5页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第6页
第6页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第7页
第7页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第8页
第8页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第9页
第9页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第10页
第10页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第11页
第11页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第12页
第12页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第13页
第13页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第14页
第14页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第15页
第15页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第16页
第16页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第17页
第17页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第18页
第18页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第19页
第19页 / 共24页
matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx

《matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx》由会员分享,可在线阅读,更多相关《matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx(24页珍藏版)》请在冰点文库上搜索。

matlab编程代做highspeedlogicCCD光斑图像定位DOCWord文档格式.docx

另一方面,卫星又带有随机的姿态变化,这个随机的姿态变化可以分解为微小的方位旋转(-5度~5度)

和微小的平移。

以上的因素将导致所得到的图像之间有像差,这个像差的存在,则在运用中会产生多光谱和全色图像的信息融合不能很好地进行,进行像素级的数据融合则有很大的像差。

考虑到在采集图像时,目标与图像传感器之间的距离基本保持不变,传感器是在平行与物体的平面内做一定的平移和旋转。

基于这两点原因,本文建立了基于简化的仿射变换模型的图像配准方法,该模型是在保持仿射变换性质的基础上,考虑实际图像的处理速度与精度问题,建立图像的平移和旋转参数模型,而不考虑缩放参数,设待配准的目标图像点坐标为

,配准后坐标为

,按照仿射变换的性质建立简化的仿射变换模型:

式中

是平移矩阵,

是旋转矩阵,此模型中的dx,dy,

,即为配准变换的参数。

该简化模型能够在保证配准精度的基础上,达到提高配准速度的目的。

本文在实验过程,将使用全色图像作为基准图像,存在旋转平移失配的R、G、B三通道的图像数据作为待配准的图像,分别与全色图像进行配准,得到校正后的图像,为后续图像融合做准备。

2.3CCD与CMOS区别

CCD与CMOS传感器是当前被普遍采用的两种图像传感器,两者都是利用感光二极管进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。

如下图所示,CCD传感器中每一行中每一个象素的电荷数据都会依次传送到下一个象素中,由最底端部分输出,再经由传感器边缘的放大器进行放大输出;

而在CMOS传感器中,每个象素都会邻接一个放大器及A/D转换电路,用类似内存电路的方式将数据输出。

图2-2左图为CCD传感器的结构,右图为CMOS传感器的结构

CCD的特殊工艺可保证数据在传送时不会失真,因此各个象素的数据可汇聚至边缘再进行放大处理;

而CMOS工艺的数据在传送距离较长时会产生噪声,因此,必须先放大,再整合各个象素的数据。

由于数据传送方式不同,因此CCD与CMOS传感器在效能与应用上也有诸多差异,这些差异包括:

·

灵敏度差异:

由于CMOS传感器的每个象素由四个晶体管与一个感光二极管构成(含放大器与A/D转换电路),使得每个象素的感光区域远小于象素本身的表面积,因此在象素尺寸相同的情况下,CMOS传感器的灵敏度要低于CCD传感器。

分辨率差异:

如上所述,CMOS传感器的每个象素都比CCD传感器复杂,其象素尺寸很难达到CCD传感器的水平,因此,当我们比较相同尺寸的CCD与CMOS传感器时,CCD传感器的分辨率通常会优于CMOS传感器的水平。

噪声差异:

由于CMOS传感器的每个感光二极管都需搭配一个放大器,而放大器属于模拟电路,很难让每个放大器所得到的结果保持一致,因此与只有一个放大器放在芯片边缘的CCD传感器相比,CMOS传感器的噪声就会增加很多,影响图像品质。

CCD传感器在灵敏度、分辨率、噪声控制等方面都优于CMOS传感器,而CMOS传感器则具有低成本、低功耗、以及高整合度的特点。

不过,随着CCD与CMOS传感器技术的进步,两者的差异有逐渐缩小的态势。

2.4CCD图像的噪声模型和去噪技术简介

2.4.1CCD噪声简介

CCD图像传感器的输出信号是空间采样的离散模拟信号,其中夹杂着各种噪声和干扰。

对CCD信号进行处理的目的就是在不损失图像细节的前提下尽可能消除噪声和干扰,以提高信噪比,获取高质量的图像。

为此必须对CCD噪声的种类、特性有所了解,并针对各种噪声进行相应的去噪处理。

在CCD中存在以下几种主要噪声:

光子噪声

光子发射是随机的,因此,势阱收集光信号电荷也是一个随机过程,这就构成了一种噪声源,它是由光子的性质决定的。

这种噪声在低照度摄像时会较严重。

散粒噪声

光注入光敏区产生信号电荷的过程是随机的。

单位时间产生的光生电荷数目在平均值上作微小波动,即形成散粒噪声。

散粒噪声与频率无关,在所有频率范围内有均匀的功率分布(白噪声特性)。

低照度、低反差条件下,当其他噪声被各种方法抑制后,散粒噪声将成为CCD的主要噪声,并决定了器件的极限噪声水平。

肥零噪声

肥零,即采用肥零电荷填充势阱位置,使信号电荷可以通过杂乱无章的区域进行转移,分为光学肥零和电子肥零。

其产生的噪声分为光学肥零噪声和电子肥零噪声,光学肥零噪声由所使用的CCD的偏置光的大小决定,电子肥零噪声由电子注入肥零机构决定。

转移噪声

CCD中前一电荷包的电荷未进行完全转移,一部分电荷残存在势阱中,成为后来电荷包的噪声干扰。

引起转移噪声的根本原因是转移损失、界面态俘获和体态俘获。

暗电流噪声

半导体内部由于热运动产生的载流子填充势阱,在驱动脉冲的作用下被转移,并在输出端形成电流,即使在完全无光的情况下也存在即暗电流。

暗电流分为扩散暗电流和表面暗电流等。

扩散暗电流产生于CCD的导电沟道和势阱下的自由区域,其扩散长度越短,势阱数目越多,暗电流越大。

表面暗电流是指一个电子能够在热激发下从界面态跃跳到导带,形成自由电子后又被势阱当作暗电荷收集起来形成的电流。

输出噪声

CCD信号的输出是通过浮置电容将CCD的信号电荷转换成为相应的电压,并多采用浮置扩散型电容输出。

T1是复位开关,其漏极接至复位电平;

T2是浮置扩散放大器,实际上是一个电压跟随器;

D是电荷包收集二极管,工作于反偏电压状态下;

CS是浮置扩散电容,

用来存储电荷。

针对CCD输出噪声特点,采用基于带通滤波采样技术的CCD噪声分析方法,即利用中心频率可调的有源带通滤波器对宽带白噪声的抑制。

该方法考虑了对CCD采样时刻的非稳态性,能在有效地提取目标信号的同时,可使等效噪声带宽保持较低,从而最大限度地减少输出信号的噪声。

为了获得有源带通滤波器输出信噪比的分析模型,首先假定该系统是线性的,则计算输出噪声特性的方法可采用Wiener-Kinchine定理。

设一个平稳随机过程的功率谱密度为:

式中,

是自相关函数.若分别考虑信号和噪声来计算系统的信噪比,则滤波器输出的平均噪声功率为:

这里

是滤波器输入噪声谱密度

是带通滤波器的传递函数。

其中

对于白噪声,设其功率谱密度

,代入上式可得

因此,在稳态情况下,用平均输出信号的幅值除以其噪声值,可得到滤波器的信噪比。

然而,事实上带通滤波器的输出信号在其达到稳态前被采样,也就意味着上述计算平均噪声功率的方法是不正确的。

滤波器输出的平均噪声功率取决于信号被采样的瞬间。

而瞬间的平均噪声功率与其对应的稳态值是不同的。

基于上述原因,解决这个问题最简单的办法就是利用一组随机微分方程来描述该滤波器的频域响应,通过随机计算规则可以算出具有时变的带通滤波器的平均噪声功率,即

,E表示数学期望算子。

假定输入噪声信号是Gauss白噪声,则Gauss白噪声是Brown运动过程或Wiener过程的形式导数。

不妨设噪声谱密度N(f)=1,且N(f)是单边的,即定义{f≥0}。

此时显然有,

是一个具有以下特征的布朗过程,即

可以得到随机噪声模型的经典微分方程。

由于对称性,该方程的矩阵可表示为:

2.4.2空间光通信CCD图像噪声模型

CCD采集的图像包含很多种噪声,这些噪声的大小取决于CCD使用方法和环境。

总的来说有以下两种:

在对物体的入射光线进行光转换时产生的和成像物体相关的噪声,这种噪声主要由于空间激光信道环境的影响。

由于CCD器件本身问题产生与成像无关的电子噪声如热电子噪声等,这部分噪声信号无法和有用信号加以区别。

通常把上述噪声以及与成像相关的光电子噪声、零信号输出和热电子的噪声信号统称为服从泊松分布的背景信号。

在CCD输出图像时,读出噪声(由于电子线路中电荷转移信号放大、模数变换等环节产生)的存在进一步降低了图像质量,实验表明,读出噪声为高斯随机分布。

Snyder等人提出了一种描述图像信号组成的数学模型:

是从CCD阵列中读出的第j个像素值,

是物体像产生的有效信号,

是背景信号(无信号探测时的探测器响应),

是读出噪声,j是CCD光敏面的点阵数目。

假定

彼此之间是独立的,并且在时间序列上也是相互独立的,互不干扰。

物像信号

以均值

呈泊松

分布。

其中:

平面响应函数

可以通过平面定标测量(即测量各测量单元之间的响应不均匀性)的方法获得;

点扩展函数

可以根据光学系统进行理论计算或实验得出,因此,可以认为该项已知。

零均值高斯白噪声

假设电荷转移放大过程中各种随机电子噪声服从零均值高斯分布,则对应于

的情形,此时为:

非零均值高斯噪声的情形

假设电荷转移放大过程中各种随机电子噪声服从非零均值高斯分布,则对于非零均值高斯白噪声的情形,给出其参数估计的矩估计方法。

得到:

2.4.2背景噪声模型

背景噪声模型比较简单,因为背景光具有三个显著的特点:

一、背景光噪声都是时间连续的,因此无需考虑信道的时间效应的影响,只用研究其时间平均功率的传输即可;

二、背景噪声中的太阳和月亮与信号光都可以近似用点光源描述,因此它们的模型基本上是相同的;

三、虽然天光和星光是扩展光源,其模型于点光源不同,但是它们来自整个半球面,故无需考虑信道的空间效应。

背景光源可分成两种基本类型:

扩展背景光源:

这种光源被假定为充满整个背景,因此它出现在整个接收机视场内;

分立光源或点光源:

它们比较局域化,强度也很大,可能出现也可能不出现在接收机视场内。

在空间系统中,地面对太阳辐射的反射是主要的扩展背景。

而太阳、月亮以及其它星体的直接辐射则对应于分立光源。

在空间系统中,天空是主要的扩展背景,而局域化光源对应于星体、行星、月亮和太阳等等。

在室内环境中,墙壁的反射成为扩展背景,局域光源可能是室内的灯光、反射表面以及类似的东西。

扩展的背景辐射源常用辐射谱函数

来描述,它定义为在波长入处单位带宽上,每单位面积光源辐射到单位立体角内的功率。

假定接受透镜面积为A,离开光源的距离为Z。

从光源来看,它表示一个约为

球面角度的立体角。

若辐射源面积为

则接受到的总功率依赖于落在接收机视场内的那部分辐射源面积。

这样,在波长入附近,带宽Δλ范围内接收机收集到的背景功率为:

定义

为从接收机测量的辐射源立体角,有

上式可以写为:

因此,如果背景光扩展包含了接收机市场,背景功率则由上式给出,并且只依赖接收机的面积、视场和带宽,特别是

与Z的大小无关。

我们还可以看出,式中

线性增加,直到包含了整个光源,此时式中开始起作用,

不随

而变化。

对于一个由式给出噪声场的局域化点光源,在波长A上定义一个光源辐照度是方便的,它是下述乘积:

功率可以由上式直接推出:

而不需要去确定光源立体角。

这样,不论是扩展光源还是局域化光源,其背景功率电平都能够根据它们的辐射谱或辐照度函数得到。

大多数背景光源可以用黑体辐射模型来描述,其辐射谱由下式给出:

式中:

c为光速,h为普朗克常数,k为波尔兹曼常数,T为辐射的开尔文温度。

在空间环境下,最重要的点光源当然是太阳。

月亮、行星和星体也表现为点光源。

从对背景的贡献而言,这些光源明显地比太阳低好多个数量级。

在任何空间链路中来自扩展的白天天空的光线也是非常重要的。

产生漫散射的白天天空主要是由大气粒子对太阳光的散射而产生的。

在晚上,大气光散射主要由月亮和银河系的辐射激发,并且要低几个数量级,很明显,就背景而言,空间光链路在晚上开通比在白天更有优势。

在某些类型的空间链路中,背景光也可能来自人造光源而不是天空背景。

例如,这种情况可能发生在室内光学链路或短距离陆上链路。

在这里,来自灯泡、路灯和市区照明系统等的杂散光产生对光接收机构成主要干扰的杂散辐射。

2.4.3散粒噪声

这是一种电子或光生在流子的粒子性引起的噪声。

例如光电子发射探测器在光照射下,即使平均的光辐射强度保持不变,光阴极每一时刻所发射出的光电子数总是围绕一个统计平均值随机起伏。

这种无规则起伏导致输出电流中含有噪声,称之为散粒噪声。

散粒噪声有限噪声功率:

散粒噪声均方根电流:

 

第三章基于MATLAB的CCD光斑图像定位算法

3.1设计前言

MATLAB是一种面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络和图像处理等学科的处理功能于一体,具有极高的编程效率。

MATLAB是一个高度集成的系统,MATLAB提供的Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,能够在连续时间域、离散时间域或者两者的混合时间域里进行建模,它同样支持具有多种采样速率的系统。

在过去几年里,Simulink已经成为数学和工业应用中对动态系统进行建模时使用得最为广泛的软件包。

MATLAB仿真有两种途径:

(1)MATLAB可以在SIMULINK窗口上进行面向系统结构方框图的系统仿真;

(2)用户可以在MATLAB的COMMAND窗口下,用运行m文件,调用指令和各种用于系统仿真的函数,进行系统仿真。

下面介绍在MATLAB上实现几类基本仿真。

计算机仿真,概括地说是一个“建模—实验—分析”的过程,即仿真不单纯是对模型的实验,还包括从建模到实验再到分析的全过程。

因此进行一次完整的仿真包括以下步骤:

列举并列项目:

每一项研究都应从说明问题开始,问题由决策者提供或由熟悉问题的分析者提供。

设置目标及完整的项目计划:

目标表示仿真要回答的问题、系统方案的说明。

项目计划包括人数、研究费用以及每一阶段工作所需时间。

建立模型和收集数据:

模型和实际系统没有必要一一对应,模型只需描述实际系统的本质或者描述系统中所研究部分的本质。

因此,最好从简单的模型开始,然后进一步建立更复杂的模型。

·

编制程序和验证:

利用数学公式、逻辑公式和算法等来表示实际系统的内部状态和输入/输出的关系。

建模者必须决定是采用通用语言如MATLAB、FORTRAN、C还是专用仿真语言来编制程序。

在本教材中,我们选择的是MATLAB和其动态仿真工具Simulink。

确认:

确认指确定模型是否精确地代表实际系统。

它不是一次完成,而是比较模型和实际系统特性的差异,不断对模型进行校正的迭代过程。

实验设计:

确定仿真的方案、初始化周期长度、仿真运行长度以及每次运行的重复次数。

生产性运行和分析:

通常用于估计被仿真系统设计的性能量度。

利用理论定性分析、经验定性分析或系统历史数据定量分析来检验模型的正确性,利用灵敏度分析等手段来检验模型的稳定性。

3.2光斑定位过程

对目标点进行提取与定位是图像处理的基础,所以在进行目标点的检测之前得进行几个前期的工作,包括:

被测物体的视频采集,图像的A/D转换,数字图像的平滑降噪。

经过以上几个步骤后再对目标点进行提取与定位,总体流程框图如下:

图3-1目标检测总体流程图

STEP1:

在设计中,目标点是空间激光通信的光源,我们让目标在CCD摄像机的视野范围内进行移动,通过MATLAB对图像进行解码,采样,最终转换成数字图像。

由于在图像的处理和传输过程中,加入外界条件的影响必然会引入噪声,所以对噪声的过滤是必不可少的,降噪的方法很多,这里主要采用中值法进行滤波。

STEP2:

数字图像的阈值分割是一种广泛使用的图像分割技术,利用图像中要提取的目标物体与背景在灰度特性上的差异,从而把图像视为具有不同灰度等级的两类区域的组合。

选取一个合适的阈值,将图像中的每一个象素点与该阈值比较,确定图像中各个像素点应该属于目标区域,还是属于背景区域,从而得到相应的二值图像。

阈值分割的特点是算法简单易懂,运算量小,要割效果较好。

阈值分割的关键在于如何先择阈值,在众多的阈值确定的方法中,对于在背景相对简单,目标比较明显的情况下,最大类间方差法比较有效,可快速将目标提取,尽可能不丢失也不添加目标信息,而其它方法相对来说速度低,并且容易影响目标的准确性。

由CCD采集到的图像大部份是属于对称的光斑,在计算光斑中心坐标之前,我们可先采用双线性插值法对截取的光斑图像进行插值处理,这样可以使光斑中心坐标的计算精度和稳定性大大提高。

设0<

x<

1,0<

y<

1,则插值点(i+x,j+y)的灰度值可以通过下式来求得:

g(i+x,j)=g(i,j)+x[g(i+1,j)-g(i,j)]

g(i,j+y)=g(i,j)+y[g(i,j+1)-g(i,j)]

g(i+x,j+y)=x[g(i+1,j)-g(i,j)]+y[g(i,j+1)-g(I,j)]+xy[g(i+1,j+1)+g(i,j)-g(i+1,j)-g(i,j+1)]+g(i,j)

在实验中我们设x、y的值,也就是在每两个像素之间的相应位置处插值。

在计算中心点的坐标时,采用基于矩的灰度质心法,计算公式如下:

为光斑中心点坐标,即所求目标点(xi,yi)的坐标;

x0,y0为光斑区域起始点的坐标;

g(xi,yi)为光斑中心点的灰度值。

3.3空间激光通信的影响因素

对于空间激光通信的环境,我们首先要考虑一下几个因素,这些因素都将会对光斑的定位照成影响。

大气不同部分的物理性质不同,同时加之热和风的原因,大气总是处于不停的流动,从而形成温度、压强、密度、流速、大小等不同的气流旋涡。

这些旋涡也总是处于不停的运动变化之中,他们的运动相互交联、叠加,形成随机的湍流运动,这就是大气湍流。

湍流现象是大气折射系数随机变化的结果。

折射系数变化由大气、陆地和海洋间温度梯度引起。

大气湍流对收端信标光跟瞄精度的影响主要表现在:

光强闪烁(大气闪烁)

大气闪烁是由于空气折射率的随机细微变化引起的。

当光束通过湍流漩涡时,折射率的变化引起波前失真,造成接收相位的随机变化。

当光束直径dB大于湍流直径l时,光束直径内包含许多个湍流漩涡,每个漩涡各自对光束形成独立的散射和衍射,从而造成光束强度在时间和空间上的随机起伏,光强忽大忽小,即光强闪烁。

光束弯曲和漂移

当传播的光束直径dB小于湍流直径l时,光束直径包含在一个湍流漩涡内,湍流的作用主要使光束整体发生随机偏折。

所以在接收平面上,光束中心(光斑)以某个统计平均位置为中心,发生快速随机性跳动,即光束弯曲,数值上可用漂移量表示。

若将光束视为整体,其平均方向会明显发生变化,称为光束弯曲。

光束展宽

光束展宽是指接收到的光斑半径或面积的变化,是由衍射和湍流漩涡的扩展引起的。

当光束直径dB大于湍流漩涡直径l时,引起湍流漩涡的扩展,造成中心轴的接收光强有一常量衰减,光斑半径增大。

由于湍流尺寸l在10和L0间连续分布,光束直径在传播过程中又不断变化,上述湍流效应总是同时发生。

而理论和试验均表明,以上湍流效应都有饱和效应,即当其增大到一定值时就不再增加,而略有减小呈现饱和。

3.4基于MATLAB光斑定位的仿真分析

首先,我们假定系统接收到的光斑图像(含噪声)为:

图3-9原始的光斑信号

3.4.1光斑的预处理

跟踪系统的精度和带宽是跟踪系统的主要性能指标,而光电式检测跟踪系统很容易受到各种环境光及背景光的干扰和不确定性因素的影响,这使得我们采集到的光斑图像中有许多噪声。

噪声往往和光斑信号交织在一起,如果平滑不当,就会使图像的细节如边界轮廓、线条等变模糊,使图像降质,所以图像平滑过程总要付出一定的细节模糊的代价。

在进行匹配之前先对图像做预处理。

图像预处理可以使得图像的性质、特征得到改善,以消除图像中孤立的特征点、毛刺和噪声,改善图像质坚旦。

目前最常用的图像去噪滤波器是均值滤波器、中值滤波器。

均值滤波器和中值滤波器分别是线性滤波器和非线性滤波器的典型代表。

均值滤波

均值滤波主要用来抑制高斯噪声。

均值滤波算法简单,易于实时处理且对高斯噪声有较好的平滑能力。

但均值算法会破坏图像边缘,且对脉冲噪声十分敏感,没有充分利用图像像素间的相关性和像素的位置信息,其仿真如下所示。

图3-10均值滤波以后的光斑信号

其代码如下所示:

H=fspecial('

average'

[33]);

gaussian1=imfilter(images,H);

figure;

imshow(gaussian1);

title('

均值滤波含噪声的图像'

);

中值滤波

中值平滑滤波器是一种非线性滤波器。

它的目的是在保护图像边缘的同时去除噪声。

在一定条件下,它可以克服线性滤波器,如最小均方滤波、平滑滤波所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。

图3-11中值滤波以后的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2