赵寿元现代遗传学知识点整理题库.doc

上传人:聆听****声音 文档编号:741901 上传时间:2023-04-29 格式:DOC 页数:7 大小:100.50KB
下载 相关 举报
赵寿元现代遗传学知识点整理题库.doc_第1页
第1页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第2页
第2页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第3页
第3页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第4页
第4页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第5页
第5页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第6页
第6页 / 共7页
赵寿元现代遗传学知识点整理题库.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

赵寿元现代遗传学知识点整理题库.doc

《赵寿元现代遗传学知识点整理题库.doc》由会员分享,可在线阅读,更多相关《赵寿元现代遗传学知识点整理题库.doc(7页珍藏版)》请在冰点文库上搜索。

赵寿元现代遗传学知识点整理题库.doc

第一章经典遗传学的诞生

l遗传学(genetics)研究生物遗传和变异规律的科学

l遗传(heredity):

生物性状或信息世代传递中的亲子间的相似现象。

l变异(variation):

生物性状在世代传递过程中出现的差异现象。

基因概念的发展

1866,年Mendel在他的豌豆杂交实验论文中首次提出遗传性状是由遗传因子控制的假说;

1909年,丹麦学者Johannson第一次提出“基因(gene)”这一术语,泛指那些控制任何性状,又依孟德尔规律的遗传因子;

1911,Morgan通过对果蝇的研究,证明基因在染色体上呈直线排列,至此经典遗传学把基因看作是不可分割的结构单位和功能单位,是决定遗传性状的功能单位和突变、重组“三位一体”的最小单位;

1941年美国生物学家比德尔和塔特姆证明酶有控制基因的作用,认为一个基因的功能相当于一个特定的蛋白质(酶),基因和酶的特性是同一序列的,每一基因突变都影响着酶的活性,于是在1946年提出了“一个基因一个酶”的假说,奠定了基因和酶之间控制关系的概念,开创了现代生物化学遗传学。

1944年,O.T.Avery通过肺炎球菌的转化试验,证明基因的化学成分为DNA,基因是DNA分子上的功能单位;

1955年,S.Benzer根据侵染大肠杆菌的T4噬菌体基因结构的分析,证明了基因的可分性,提出了突变子、重组子和顺反子的概念。

l性状(trait/character):

生物体所表现的形态特征和生理特性,并能从亲代遗传给子代。

相对性状(contrastingcharacter)同一单位性状在不同个体间所表现出来的相对差异。

异花授粉(cross-fertilized)=杂交(hybridization)

显性性状(dominantcharacter)隐形性状(recessivecharacter)

纯合子(homozygote)/杂合子(heterozygote)

l表型(phenotype)生物体表现出的可观测的性状

基因型(genotype)个体的基因组合,即遗传组成

孟德尔提出以下假说

①生物的遗传性状是由遗传因子(hereditarydeterminant)决定的。

②每棵植株的每一种性状都分别由一对遗传因子控制。

③每一个生殖细胞(花粉或卵细胞)只含遗传因子的一个。

④每对遗传因子中,一个来自父本的雄性生殖细胞,另一个来自母本的雌性生殖细胞。

⑤形成配子细胞时,每对遗传因子相互分开,也就是分离,然后分别进入生殖细胞。

⑥生殖细胞的结合(形成一个新合子或个体)是随机的。

⑦控制红花的遗传因子同控制白花的遗传因子是同一种遗传因子的两种形式,其中红花对白花是显性,白花对红花是隐性。

只要有一个控制红花的遗传因子就会开红花,只有两个遗传因子都是控制白花的植株才会开白花。

l分离法则lawofsegregation:

F2群体中显隐性分离比例大致为3:

1。

l自由组合法则:

又称独立分配法则lawofindependentassortment,指形成包含两个以上的相对性状的杂种时,各对相对性状之间各自独立地发生自由组合。

独立分配规律的要点:

控制两对不同性状的等位基因在配子形成过程中,一对等位基因与另一对等位基因的分离和组合互不干扰,各自独立分配到配子之中。

独立分配的实质:

控制两对性状的等位基因,分布在不同的同源染色体上;减数分裂时,每对同源染色体上等位基因发生分离,而位于非同源染色体上的基因,可以自由组合。

l完整性法则:

支配性状的遗传因子在彼此组合形成杂种时,互不沾染,互不融合。

遗传因子在杂种中仍然保持其完整性。

l复等位基因(Allele,Allomorph)同一基因座(locus)存在的两个以上不同状态的基因,其总和称之为复等位基因(multiplealleles)(如,红细胞血型,IA、IB、i..)。

lχ2检验l χ2=Σni=1(实际频数-预计频数)2/预计频数

df=n-1(自由度)p=0.05(显著差异)p=0.01(极显著差异)

模式生物——果蝇

1、果蝇的生活周期短。

大约为10天,新羽化的雌性成虫大约8小时可交配,约40小时开始产卵。

2、容易培养;通过控制养殖的温度,可以加速和减缓果蝇的发育。

3、繁殖子代多;产卵初期每天可达50~70枚,累计产卵可达上千枚。

4、染色体数目少;

5、染色体大;6、有个别性形态特征;7、还积累了丰富多彩的遗传资料

l连锁定律lawoflinkage:

原来亲本所具有的两个性状,在F2联系在一起遗传的现象。

若干非等位基因位于同一染色体而发生联系遗传的现象。

第二章分子生物学的兴起

DNA作为主要遗传物质的直接证据

1.肺炎双球菌的转化实验

实验步骤:

1.S菌光滑型→小鼠死,R菌粗糙型致病→小鼠活

2.死S菌+活R菌→小鼠死

3.死S菌→小鼠活

结论:

说明DNA具有特定的遗传特性。

说明一种基因型细胞DNA进入另一种基因型细胞后,可引起稳定遗传变异。

2.噬菌体的感染实验

实验步骤:

1.S(硫)主要存在蛋白质中,P(磷)主要存在DNA中

2.被35S和被32P标记的噬菌体分别感染细菌

3.宿主细胞内主要是32p,宿主细胞外主要是35S

结论:

说明注入宿主细胞的物质是DNA,只有DNA是联系亲代和子代的物质。

说明DNA是遗传物质。

3.烟草花叶病毒的感染和繁殖(TMV)

实验步骤:

1.把TMV的蛋白质和RNA分离

2.分别感染烟草,只有含RNA的成分能成功

3.S系蛋白质外壳不含组氨酸、甲硫氨酸,HR系含

4.S系pro+HR系RNA→第二代HR性状

5.S系RNA+HR系pro→第二代S性状

结论:

说明决定病毒遗传性状的是RNA。

夏洛夫法则

(1)DNA中的4种碱基的含量并不是等量的;

(2)腺嘌呤(A)的量总是和胸腺嘧啶(T)的量相等;鸟嘌呤(G),则和胞嘧啶(C)几乎相等.既:

A=T;C=G

DNA双螺旋结构特点:

1.两条互补多核酸链、在同一轴上互相盘旋;

2.双链具有反向平行的特点;

3.碱基配对原则为:

A=T、G=C,双螺旋直径约20A,螺距为34A(10个碱基对)。

DNA双螺旋结构的生物学意义

第一,它能够说明遗传物质的自我复制。

在复制时,DNA的双链拆开,成为两个模板,再根据碱基配对的原则,复制成两个与原来的DNA序列一模一样的新分子。

在这两个新DNA分子中,各有一条旧链和一条新合成的链。

这个“半保留复制”的设想后来被麦赛尔逊和斯塔勒用同位素追踪实验证实。

第二,它能够说明遗传物质是如何携带遗传信息的。

DNA上的碱基序列就是遗传信息,4种碱基的排列组合可以携带无限多样的遗传信息。

第三,它能够说明基因是如何突变的。

基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。

  

中心法则:

从噬菌体到真核生物的整个生物界共同遵循的规律。

遗传信息DNA到mRNA的转录,再到蛋白质翻译,以及遗传信息从DNA到DNA的复制过程。

中心法则的发展:

⑴.RNA的反转录⑵.RNA的自我复制⑶.DNA指导的蛋白质合成

⑴.RNA的反转录单链RNA在反转录酶的作用下,可反转录成DNA,再以此为模板生成双链DNA。

说明1.遗传信息可以在DNA和RNA之间流动

2.DNA、RNA的遗传信息单向流动到蛋白质中

第三章基因的概念和结构

l等位基因(Allele,Allomorph)同一座位存在的两个以上不同状态的基因,其总和称之为复等位基因(multiplealleles)如,红细胞血型,人白细胞抗原(HLA)…。

n个复等位基因的基因型数目是n+n(n-1)/2,纯合子是n个,杂合子是n(n-1)/2

l顺反子cistron:

是一个遗传的功能单位,一个顺反子决定一条多肽链,顺反子即是基因。

l突变子mutator/muton一个顺反子内任何一突变位点,发生变化产生突变表型,即一个基因内产生突变表型的最小单位。

l重组子recon/recombinant两个突变位点之间可发生交换产生野生型的最小单位,即不能由重组分开的基本单位。

l操纵子operon:

操纵基因与由它操纵的几个结构基因连锁在一起,几个结构基因由一个启动子转录成一个RNA分子再翻译成蛋白质,这样的结构叫操纵子。

l超基因supergene:

指作用于一种性状或作用一系列相关性状的几个紧密连锁的基因,例血红蛋白基因簇。

l假基因pseudogene具有与功能基因相似序列,但由于有许多突变以致失去了原有的功能,是没有功能的基因,用Ψ来表示,例人类珠蛋白基因簇。

l外显子exon真核生物的基因编码是不连续的,其中编码蛋白质的序列称为外显子,是出现在mRNA中的基因序列,反之则为内含子intron。

l重叠基因overlappinggene:

指在同一段DNA顺序上,由于阅读框架不同或终止早晚不同,同时编码两个以上基因的现象。

l可动基因mobilegene:

指染色体组上可以转移(或转座)的基因。

即跳跃基因(jumpinggene)或转座因子transposableelement。

激活因子-解离系统(Ac-Ds系统)引起转座的一种双因子系统,激活因子编码解离酶,自主转座。

解离因子是激活因子的缺失变异型,可被激活因子编码的转座酶激活而转座。

l转座子transposon一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子。

Tn:

复合型的转座因子称为转座子(trans—poson,Tn)。

这种转座因子带有同转座无关的一些基因,如抗药性基因,它的两端就是IS,构成了“左臂”和“右臂”。

两个“臂”可以是正向重复,也可以是反向重复。

这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座。

Is:

最简单的转座子不含有任何宿主基因而常被称为插入序列(IS),它们是细菌染色体或质粒DNA的正常组成部分

转座因子转座途径有

复制转座(replicativetransposition):

转座因子在转座期间先复制一份拷贝,而后拷贝转座到新的位置,在原先的位置上仍然保留原来的转座因子。

非复制转座(non-replicativetransposition)转座因子直接从原来位置上转座插入新的位置,并留在插入位置上,这种转座只需转座酶的作用。

反转录转座子retrotransposon/retroposon指通过RNA为中介,反转录成DNA后进行转座的可动元件。

这样的转座过程称为反转座作用(retrotrans—position)。

(反转录病毒、病毒超家族(viralsuperfamily)、非病毒超家族(nonviralsuperfamily))

癌基因oncogene人类或其他动物细胞(以及致癌病毒)固有的一类基因。

又称转化基因transforminggene,它们一旦活化便能促使人或动物的正常细胞发生癌变。

(病毒癌基因v-onc、原癌基因pro-oncogene/细胞癌基因c-onc)

抑癌基因cancersuppressorgenes(也称肿瘤抑制基因,tumorsuppressorgenes,或抗癌基因,anti-oncogenes)正常细胞中存在基因,在被激活情况下它们具有抑制细胞增殖作用,但在一定情况下被抑制或丢失后可减弱甚至消除抑癌作用的基因。

正常情况下它们对细胞的发育、生长和分化的调节起重要作用。

(p53)

致癌病毒à病毒癌基因1DNA病毒(乳头瘤病毒、腺病毒、疱疹病毒、乙肝病毒)2RNA病毒(反转录病毒ras、src)

细胞质遗传cytoplasmicinheritance的特点:

1.正交和反交的遗传表现不同。

2.连续回交,母本核基因可被全部置换掉,但由母本细胞质基因所控制的性状仍不会消失;

3.非孟德尔遗传non-Mendelianinheritance又称非染色体遗传、染色体外遗传、核外遗传、母性遗传maternalinheritance。

一切受细胞质基因所决定的性状,其遗传信息一般只能通过卵细胞传给子代,而不能通过精细胞遗传给子代。

线粒体DNA分子特点:

⑴mtDNA一般呈圆环,非常小,仅为核DNA十万分之一。

⑵没有内含子,几乎每一对核苷酸都参与一个基因的组成;

⑶无重复序列,许多基因序列是重叠的;

⑷线粒体基因组能够自我复制,转录和合成少数蛋白质,大部分由核基因编码。

⑸线粒体自身结构和生命活动受核基因参与和控制,核基因遗传是主宰。

叶绿体DNA的分子特点:

 ①.ctDNA与细菌DNA相似,裸露的DNA;

 ②.闭合双链环状结构;

 ③.多拷贝:

高等植物每个叶绿体中有30~60个DNA,整个细胞约有几千个DNA分子;藻类中,叶绿体中有几十至上百个DNA分子,整个细胞中约有上千个DNA分子。

4.线粒体基因组能够自我复制,转录和合成少数蛋白质,大部分由核基因编码。

第四章基因和染色体

真核生物染色体:

端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。

端粒(Telomeres)是存在于真核细胞线状染色体末端的一小段DNA重复序列-蛋白质复合体,构成了特殊的“帽子”结构,作用是保持染色体的完整性。

端粒的复制:

端粒重复序列是由端粒酶合成后添加到染色体末端。

端粒酶(Telomerase)负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端。

端粒DNA主要功能有:

第一,保护染色体不被核酸酶降解;

第二,防止染色体相互融合;

第三,为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。

l着丝粒(centromere)真核生物细胞在进行有丝分裂(mitosis)和减数分裂(meiosis)时,染色体分离的一种“装置”,使复制的染色体在有丝分裂和减数分裂中可均等地分配到子细胞中。

l染色体带型(bandingpattern)染色体经过特殊处理并用特定染料染色后,在光学显微镜下可见其臂上显示不同深浅颜色的条纹,此称为染色体带。

主要的显带技术有G带(Giemsa显带)、Q显带(奎丫因显带)、R显带(逆转显带)、C显带(着丝粒显带)、前期显带(高分辨技术)。

染色体核型分析karyotypeanalysis将待测的细胞的染色体按照该生物固有的染色体形态特征和规定(长度、着丝粒位置、臂比、随体有无等),借助染色体分带技术进行配对、编号和分组,并进行形态分析的过程。

染色体分带技术:

抽血à(PHA处理、37度、72h)秋水仙素处理à低渗溶胀à滴片(甲醇、冰醋酸)à观察、分析

荧光原位杂交分析fluorescenceinsituhybridization(FISH)使用荧光素标记DNA探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。

(特异性高)

SKY(光谱核型分析技术)

l染色体结构的改变

包括:

缺失、重复、倒位、易位的特点和遗传效应

l基因突变genemutation指基因的一种等位形式变成另一种等位形式。

包括:

点突变、移码突变、基因重组、基因转换动态突变、表观遗传变异、DNA甲基化、基因组印记、RNA编辑 

l表观遗传(epigenetic)变异是指基因表达发生改变但不涉及DNA序列的变化,能够在代与代之间传递。

表观遗传变异包括基因沉默、DNA甲基化、核仁显性、休眠转座子激活和基因组印记等方面,周围的环境也很重要

l基因重组recombination由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。

(同源重组、非同源重组)

第五章基因组

l基因组genome单倍体细胞中所含的整套染色体所包含的DNA分子以及DNA分子所携带的全部遗传指令。

基因组研究的主要内容:

基因组作图、测序、基因识别、模式生物研究、生物信息学和计算生物学、伦理&法律、社会影响讨论

lC值悖理(C-valueparadox)从总体上说,生物基因组的大小同生物在进化上所处的地位高低无关的现象。

l重复序列repetitivesequence:

基因组中重复出现的序列。

如,STR,SNP,微卫星DNA

lSNP(singlenucleotidepolymorphism)单核苷酸多态性:

在基因组内某一特定的核苷酸位置上,可以有不同的核苷酸。

单个核苷酸位置上存在转换、颠换、插入、缺失等变异所引起的DNA序列多态性(小于1%归为点突变)。

l基因克隆clone:

是指某种目的基因的分离过程,通常是将生物材料的遗传物质如DNA以酶切成片断,插入到载体中,通过无性繁殖(细菌或细胞的倍增)使其扩增,然后再以某种探针选择、钓取目的基因。

第六章基因与发育

l生物学角度来说,发育是高等生物从受精卵开始发育,经过一系列细胞分裂(division)和分化(differentiation),产生新个体,生长繁殖的一系列过程。

l从遗传学角度来说,发育是基因按照特定的时间,空间程序表达的过程。

l研究基因对发育的调控作用的学科就是发育遗传学(DevelopmentalGenetics)。

l决定(determination):

早期胚胎期间的全能或多能干细胞在基因的调控下,确定了特定细胞的分化趋势,即指定了这些细胞的分化命运。

l特化(specification):

细胞或组织按照已经被决定的命运自主地进行分化,形成特异性组织或细胞地过程。

l细胞克隆cellcloning把单个细胞从群体内分离出来单独培养,使之重新繁衍成一个新的细胞群体的培养技术。

第七章基因表达与调控

l顺式作用元件(cis-actingelement)与靶基因位于同一条染色体上起调控作用的DNA序列。

通常不编码蛋白质,位于基因的旁侧序列或内含子中。

(启动子、增强子、弱化子、绝缘子、沉默子)。

顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。

l反式作用因子trans-actingfactor:

基因编码的起调控作用的产物。

反式作用的基因与受调控基因多半不位于同一条染色体上。

(调节基因、转录因子基因)

转录因子(transcriptionfactor):

锌指结构、亮氨酸拉链、螺旋-转角-螺旋结构、螺旋-环-螺旋结构、同源域

l增强子(enhancer):

指增加同它连锁的基因转录频率的DNA序列。

l沉默子(silencer):

能够对基因转录起阻遏作用的DNA片段,属于负性调控元件。

真核生物的三个水平调控:

  DNA水平:

启动子、增强子、弱化子、绝缘子、沉默子、DNA甲基化。

转录水平:

RNA选择性剪接、RNA编辑(移码)、RNA甲基化

翻译水平:

翻译因子磷酸化、多肽切割、多肽化学修饰(磷酸化、糖基化)、蛋白质内含子的剪切

第八章数量性状基因及其遗传

l质量性状discretecharacters表型之间截然不同,具有质的差别,用文字描述的性状称质量性状。

如水稻的糯与粳,豌豆的饱满与皱褶等性状。

l数量性状quantitativecharacters性状之间呈连续变异状态,界限不清楚,不易分类,用数字描述的性状。

如作物的产量,奶牛的泌乳量,棉花的纤维长度等。

l质量性状和数量性状的区别:

质量性状数量性状

①变异类型不连续连续

②F1表现类型显性性状中亲类型

③对环境的敏感性不敏感敏感

④后代个体数分布孟德尔遗传正态分布

⑤基因数目一个或少数几个微效多基因

⑥研究方法系谱和概率分析统计分析

l微效基因minorgene决定数量性状的基因常常不是一对而是多对,每个基因只有较小的一部分表型效应。

数量性状通常是多个微效基因的效应累加的结果。

l遗传率heritability在多基因决定性状的遗传中,遗传因素所起作用的程度。

h2=VC/VP=VG/(VG+VE)(VG表型变异方差VP遗传变异方差VE环境变异方差)

第九章群体遗传学

l哈代-温伯格定律(Hardy-Weinberglaw)又叫遗传平衡定律。

在一个大的随机交配的群体内,基因型频率在没有漂变、迁移、突变和选择的理想条件下,世代相传保持不变。

l遗传漂变geneticdrift由于某种机会,某一等位基因频率在群体(尤其是在小群体)中出现世代传递的波动现象,也称为随机遗传漂变(randomgeneticsdrift)。

l奠基者效应foundereffect遗传漂变的一种形式,指由带有亲代群体中部分等位基因的少数个体重新建立新的群体,这个群体后来的数量虽然会增加,但因未与其他生物群体交配繁殖,彼此之间基因的差异性甚小。

这种情形一般发生于对外隔绝的海岛,或较为封闭的新开辟村落等。

第十章重组DNA(基因工程)

l工具酶

限制性内切核酸酶restrictionendonuclease可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶

DNA连接酶DNALigase连接DNA链3‘-OH末端和,另一DNA链的5’-P末端,使二者生成磷酸二酯键,从而把两段相邻的DNA链连成完整的链。

连接酶的催化作用需要消耗ATP。

DNA聚合酶(DNApolymerase)是细胞复制DNA的重要作用酶。

DNA聚合酶,以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。

l载体

质粒(Plasmid)是附加到细胞中的非细胞的染色体或核区DNA原有的能够自主复制的较小的DNA分子。

质粒载体(plasmidvector)在由限制性核酸内切酶修饰过的质粒DNA序列中插入外源的目的基因,以质粒为载体,将目的基因通过转化或转导的方法导进宿主细胞,进行重组、筛选、扩增的过程。

pBR质粒载体筛选重组子(氨苄青霉素抗性基因Ampr、四环素抗性基因Tetr、插入失活)

pUC质粒蓝白斑筛选重组子(LacZ基因失活—不能发生α-互补—无LacA酶活性—不能使X-gal变蓝--筛选出重组子)

噬菌体载体常用的有:

λ类噬菌体和M13噬菌体。

黏粒cosmid,指带有黏端位点(cos)的质粒,是由人工构建的含有λ噬菌体DNA的cos序列和质粒复制子的载体。

特点:

①具有λ噬菌体的特性。

②具有质粒的特性。

③克隆外源DNA的容量大。

④能与有同源序列的质粒进行重组。

噬粒:

一类人工构建的含有单链噬菌体包装序列、复制子以及质粒复制子、克隆位点、标记基因的特殊类型的载体。

特点:

1.双链DNA既稳定又高产,具有常规质粒的特征;2.免不用将外缘DNA片段从质粒亚克隆于噬菌体载体,更简便;3.载体足够小,可得到长达10kb的外源DNA区段的单链。

单链DNA噬菌体

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2