单片机驱动SD卡.docx

上传人:wj 文档编号:7442566 上传时间:2023-05-11 格式:DOCX 页数:7 大小:251.56KB
下载 相关 举报
单片机驱动SD卡.docx_第1页
第1页 / 共7页
单片机驱动SD卡.docx_第2页
第2页 / 共7页
单片机驱动SD卡.docx_第3页
第3页 / 共7页
单片机驱动SD卡.docx_第4页
第4页 / 共7页
单片机驱动SD卡.docx_第5页
第5页 / 共7页
单片机驱动SD卡.docx_第6页
第6页 / 共7页
单片机驱动SD卡.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

单片机驱动SD卡.docx

《单片机驱动SD卡.docx》由会员分享,可在线阅读,更多相关《单片机驱动SD卡.docx(7页珍藏版)》请在冰点文库上搜索。

单片机驱动SD卡.docx

AT89C52单片机驱动SD卡系统设计

本文详细阐述了用AT89C52单片机对SD卡进行操作的过程,提出了一种不带SD卡控制器,MCU读写SD卡的方法,实现了SD卡在电能监测及无功补偿数据采集系统中的用途。

长期以来,以FlashMemory为存储体的SD卡因具备体积小、功耗低、可擦写以及非易失性等特点而被广泛应用于消费类电子产品中。

特别是近年来,随着价格不断下降且存储容量不断提高,它的应用范围日益增广。

当数据采集系统需要长时间地采集、记录海量数据时,选择SD卡作为存储媒质是开发者们一个很好的选择。

在电能监测以及无功补偿系统中,要连续记录大量的电压、电流、有功功率、无功功率以及时间等参数,当单片机采集到这些数据时可以利用SD作为存储媒质。

本文主要介绍了SD卡在电能监测及无功补偿数据采集系统中的应用方案

设计方案

应用AT89C52读写SD卡有两点需要注意。

首先,需要寻找一个实现AT89C52单片机与SD卡通讯的解决方案;其次,SD卡所能接受的逻辑电平与AT89C52提供的逻辑电平不匹配,需要解决电平匹配问题

 通讯模式

 SD卡有两个可选的通讯协议:

SD模式和SPI模式。

SD模式是SD卡标准的读写方式,但是在选用SD模式时,往往需要选择带有SD卡控制器接口的MCU,或者必须加入额外的SD卡控制单元以支持SD卡的读写。

然而,AT89C52单片机没有集成SD卡控制器接口,若选用SD模式通讯就无形中增加了产品的硬件成本。

在SD卡数据读写时间要求不是很严格的情况下,选用SPI模式可以说是一种最佳的解决方案。

因为在SPI模式下,通过四条线就可以完成所有的数据交换,并且目前市场上很多MCU都集成有现成的SPI接口电路,采用SPI模式对SD卡进行读写操作可大大简化硬件电路的设计。

虽然AT89C52不带SD卡硬件控制器,也没有现成的SPI接口模块,但是可以用软件模拟出SPI总线时序。

本文用SPI总线模式读写SD卡。

电平匹配

SD卡的逻辑电平相当于3.3VTTL电平标准,而控制芯片AT89C52的逻辑电平为5VCMOS电平标准。

因此,它们之间不能直接相连,否则会有烧毁SD卡的可能。

出于对安全工作的考虑,有必要解决电平匹配问题。

要解决这一问题,最根本的就是解决逻辑器件接口的电平兼容问题,原则主要有两条:

一为输出电平器件输出高电平的最小电压值,应该大于接收电平器件识别为高电平的最低电压值;另一条为输出电平器件输出低电平的最大电压值,应该小于接收电平器件识别为低电平的最高电压值。

一般来说,通用的电平转换方案是采用类似SN74ALVC4245的专用电平转换芯片,这类芯片不仅可以用作升压和降压,而且允许两边电源不同步。

但是,这个方案代价相对昂贵,而且一般的专用电平转换芯片都是同时转换8路、16路或者更多路数的电平,相对本系统仅仅需要转换3路来说是一种资源的浪费。

考虑到SD卡在SPI协议的工作模式下,通讯都是单向的,于是在单片机向SD卡传输数据时采用晶体管加上拉电阻法的方案,基本电路如图1所示。

而在SD卡向单片机传输数据时可以直接连接,因为它们之间的电平刚好满足上述的电平兼容原则,既经济又实用。

这个方案需要双电源供电(一个5V电源、一个3.3V电源供电),3.3V电源可以用AMS1117稳压管从5V电源稳压获取。

硬件接口设计

SD卡提供9Pin的引脚接口便于外围电路对其进行操作,9Pin的引脚随工作模式的不同有所差异。

在SPI模式下,引脚1(DAT3)作为SPI片选线CS用,引脚2(CMD)用作SPI总线的数据输出线MOSI,而引脚7(DAT0)为数据输入线MISO,引脚5用作时钟线(CLK)。

除电源和地,保留引脚可悬空。

本文中控制SD卡的MCU是ATMEL公司生产的低电压、高性能CMOS8位单片机AT89C52,内含8K字节的可反复擦写的只读程序存储器和256字节的随机存储数据存储器。

由于AT89C52只有256字节的数据存储器,而SD卡的数据写入是以块为单位,每块为512字节,所以需要在单片机最小系统上增加一片RAM。

本系统中RAM选用存储器芯片HM62256,容量为32K。

对RAM进行读写时,锁存器把低8位地址锁存,与P2口的8位地址数据构成16位地址空间,从而可使SD卡一次读写512字节的块操作。

系统硬件图如图2所示。

软件设计

SPI工作模式

SD卡在上电初期自动进入SD总线模式,在此模式下向SD卡发送复位命令CMD0。

如果SD卡在接收复位命令过程中CS低电平有效,则进入SPI模式,否则工作在SD总线模式。

对于不带SPI串行总线接口的AT89C52单片机来说,用软件来模拟SPI总线操作的具体做法是:

将P1.5口(模拟CLK线)的初始状态设置为1,而在允许接收后再置P1.5为0。

这样,MCU在输出1位SCK时钟的同时,将使接口芯片串行左移,从而输出1位数据至AT89C52单片机的P1.7(模拟MISO线),此后再置P1.5为1,使单片机从P1.6(模拟MOSI线)输出1位数据(先为高位)至串行接口芯片。

至此,模拟1位数据输入输出便完成。

此后再置P1.5为0,模拟下1位数据的输入输出,依此循环8次,即可完成1次通过SPI总线传输8位数据的操作。

本文的实现程序把SPI总线读写功能集成在一起,传递的val变量既是向SPI写的数据,也是从SPI读取的数据。

具体程序如下:

(程序是在KeiluVision2的编译环境下编写)

  sbitCS=P3^5;

  sbitCLK=P1^5;

  sbitDataI=P1^7;

  sbitDataO=P1^6;

  #defineSD_Disable()CS=1//片选关

  #defineSD_Enable()CS=0//片选开

  unsignedcharSPI_TransferByte(unsignedcharval)

  {

  unsignedcharBitCounter;

  for(BitCounter=8;BiCounter!

=0;BitCounter--)

  {CLK=0;

  DataI=0;//write

  if(val&0x80)DataI=1;

  val<<=1;

  CLK=1;

  if(DataO)val|=1;//read

  }

  CLK=0;

  returnval;

  }

 SD卡的初始化

对SD卡进行操作首先要对SD卡进行初始化,初始化的过程中设置SD卡工作在SPI模式,其流程图如图3所示。

在复位成功之后可以通过CMD55和ACMD41判断当前电压是否在工作范围内。

主机还可以继续通过CMD10读取SD卡的CID寄存器,通过CMD16设置数据Block长度,通过CMD9读取卡的CSD寄存器。

从CSD寄存器中,主机可获知卡容量,支持的命令集等重要参数。

SD卡初始化的C语言程序如下:

  unsignedcharSD_Init(void)

  {unsignedcharretry,temp;

  unsignedchari;

  for(i=0;i<0x0f;i++)

  {SPI_TransferByte(0xff);//延迟74个以上的时钟

  }

  SD_Enable();//开片选

  SPI_TransferByte(SD_RESET);//发送复位命令

  SPI_TransferByte(0x00);

  SPI_TransferByte(0x00);

  SPI_TransferByte(0x00);

  SPI_TransferByte(0x00);

  SPI_TransferByte(0x95);

  SPI_TransferByte(0xff);

  SPI_TransferByte(0xff);

  retry=0;

  do{temp=Write_Command_SD(SD_INIT,0);

  //发送初始化命令

  retry++;

  if(retry==100)//重试100次

  {SD_Disable();//关片选

  return(INIT_CMD1_ERROR);

  //如果重试100次失败返回错误号

  }

  }while(temp!

=0);

  SD_Disable();//关片选

  return(TRUE);//返回成功

  }

数据块的读写

完成SD卡的初始化之后即可进行它的读写操作。

SD卡的读写操作都是通过发送SD卡命令完成的。

SPI总线模式支持单块(CMD24)和多块(CMD25)写操作,多块操作是指从指定位置开始写下去,直到SD卡收到一个停止命令CMD12才停止。

单块写操作的数据块长度只能是512字节。

单块写入时,命令为CMD24,当应答为0时说明可以写入数据,大小为512字节。

SD卡对每个发送给自己的数据块都通过一个应答命令确认,它为1个字节长,当低5位为00101时,表明数据块被正确写入SD卡。

在需要读取SD卡中数据的时候,读SD卡的命令字为CMD17,接收正确的第一个响应命令字节为0xFE,随后是512个字节的用户数据块,最后为2个字节的CRC验证码。

可见,读写SD卡的操作都是在初始化后基于SD卡命令和响应完成操作的,写、读SD卡的程序流程图如图4和图5所示。

结束语

实验结果表明单片机使用12MHz的晶体振荡器时,读写速度和功耗都基本令人满意,可以应用于对读写速度要求不高的情况下。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2