基于单片机的温湿度检测学士学位论文.docx

上传人:b****6 文档编号:7659527 上传时间:2023-05-11 格式:DOCX 页数:43 大小:599.02KB
下载 相关 举报
基于单片机的温湿度检测学士学位论文.docx_第1页
第1页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第2页
第2页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第3页
第3页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第4页
第4页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第5页
第5页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第6页
第6页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第7页
第7页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第8页
第8页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第9页
第9页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第10页
第10页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第11页
第11页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第12页
第12页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第13页
第13页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第14页
第14页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第15页
第15页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第16页
第16页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第17页
第17页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第18页
第18页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第19页
第19页 / 共43页
基于单片机的温湿度检测学士学位论文.docx_第20页
第20页 / 共43页
亲,该文档总共43页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于单片机的温湿度检测学士学位论文.docx

《基于单片机的温湿度检测学士学位论文.docx》由会员分享,可在线阅读,更多相关《基于单片机的温湿度检测学士学位论文.docx(43页珍藏版)》请在冰点文库上搜索。

基于单片机的温湿度检测学士学位论文.docx

基于单片机的温湿度检测学士学位论文

目录

摘要

ABSTRACT

第1章绪论1

1.1课题来源1

1.2课题背景1

1.3国内外研究现状及分析1

第2章系统方案设计3

2.1总体方案设计3

2.2系统组成及框图3

第3章硬件设计4

3.1微处理器4

3.1.151单片机的主要特性4

3.1.2STC89C51的引脚具体介绍4

3.1.2STC89C51的最小系统6

3.2温度测量电路的实现6

3.2.1温度传感器的选择6

3.2.2DS18B20介绍7

3.2.3温度测量电路8

3.3湿度测量电路的实现9

3.3.1湿度传感器的选择9

3.3.2HS1101介绍9

3.3.3NE555振荡器10

3.3.4湿度测量电路的实现10

3.4液晶显示及报警电路12

3.4.1显示方案的选择12

3.4.2LCD1602及其应用12

3.4.3报警电路14

3.5按键电路设计14

第4章软件设计16

4.1主程序流程图16

4.2温度模块程序设计17

4.3湿度模块程序设计18

4.4显示子程序设计18

4.5按键模块程序设计19

第5章系统的仿真调试21

结论22

参考文献23

附录I24

附录II25

 

毕业论文(设计)诚信声明

本人声明:

所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

论文(设计)作者签名:

日期:

年月日

毕业论文(设计)版权使用授权书

本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。

本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。

本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。

论文(设计)作者签名:

日期:

年月日

指导教师签名:

日期:

年月日

摘要

随着大棚技术的普及,温室大棚数量不断增多,对于温室大棚来说,很重要的两个管理因素是温度控制及湿度控制。

温湿度太低,植物就会被冻死或则停止生长,所以要将温湿度始终控制在适合植物生长的范围内。

传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。

如果仅靠人工控制,既耗人力,又容易发生差错。

现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。

为此,在现代化的温室大棚管理中通常有温湿度自动控制系统,以控制温室大棚中的温湿度,适应生产需要,提高经济效益。

本论文主要阐述了基于STC89C51单片机的温室大棚温度及湿度控制系统设计原理、主要电路设计及软件设计等。

该系统采用STC89C51单片机作为控制器,DS18B20作为温度传感器,HS1101作为湿度传感器。

系统主要功能如下:

1.对温度进行测量

2.对湿度进行测量

3.温度及湿度的显示

4.温度及湿度超出设定范围时发出报警信号

5.设定温度及湿度设定值

关键词STC89C51;温室大棚;温度及湿度

ABSTRACT

Withthepopularizationoftrellistechnology,greenhousetrellisanever-growingnumber,togreenhousewarming,itisimportanttoshedtwomanagementfactoristemperaturecontrolandhumiditycontrol.Temperatureistoolow,theplantcanfreezetodeathorstopgrowth,sowillalwayscontroltemperatureandhumidityinsuitableforplantgrowthrange.Thetraditionaltemperaturecontrolisingreenhousecanopyinternalsuspensionthermometer,workerswilladjustthetemperatureaccordingtoreadthetemperatureinsidetheshelter.Ifonly,bothconsumptionbyartificialcontrolhumanandeasytoplaceregularorders.Now,withtheincreaseofagriculturalindustryscalequantityshelterforthetemperaturecontrolmeasures,thetraditionalisshowingsignificantlimitations.Therefore,inmoderngreenhousetrellismanagementzhongtongoftentemperatureandhumidityautomaticcontrolsystemtocontrolthetemperatureandhumidity,adapttogreenhousecanopyproductionneedsandimprovetheeconomicbenefit.ThispapermainlyexpoundstheSTC89C51MCUbasedongreenhousecanopytemperatureandhumiditycontrolsystemdesignprinciple,maincircuitdesignandsoftwaredesign,etc.ThissystemUSESSTC89C51singlechipmicrocomputerascontroller,DS18B20astemperaturesensor,HS1101ashumiditysensor.Systemmainfunctionisasfollows:

1.Totemperaturemeasuring2.Thehumiditymeasurements3.Temperatureandhumiditydisplay4.Temperatureandhumiditybeyondthealarm-immediatelysetrange5.SettemperatureandhumidityvalueKeywords:

STC89C51;Greenhousecanopy;Temperatureandhumidity

第1章绪论

我国作为一个农业大国,温室技术的发展缺比较晚、与国外的技术相比有很大差距。

为了提高这方面的技术,在自70年代末起,我国先后从日本、美国、荷兰和保加利亚等国引进了不下40套的现代化温室成套设备,虽然引进的这些温室设备技术领先、设备先进,但在我国的使用过程中还存在着较为严重问题,主要是由于我国自然气候的特点和引进的设备不能相符合,导致设备不能发挥起作用,加上设备的可改动性不大,因而很难达到设备对温室内温度、湿度等的合理控制。

经过多年来的研究和实验,我国的温室大棚技术发展到现在,已经形成了比较完整和全面的体系。

但在某些方面还有欠缺和需要改进地方,可见,设计温湿度控制系统具有重要的现实意义。

1.1课题来源

该课题为自选课题。

1.2课题背景

传统农业生产中,农作物的产量受到自然因素的影响巨大,若天气情况不适合农作物的生长条件,就会导致其产量严重下降。

为改变农业生产对自然环境的严重依赖,大棚技术应运而生。

现代化农业生产中,温室大棚作为一种反季节种植和提高产量的重要手段,越来越受到人们的关注。

各种温室技术如雨后春笋般出现。

温室大棚技术也越来越成熟。

其中,温度和湿度作为大棚环境中的两个主要因素,对它们的检测及控制就显得尤为重要。

1.3国内外研究现状及分析

国内温室发展现状。

至20世纪60年代,中国的设施农业始终徘徊在小规模、低水平、发展速度缓慢的状态,70年代初期地膜覆盖技术引入中国,对保温保墒起到一定的作用。

70~80年代,相继出现了塑料大棚和日光温室。

90年代开始,中国设施农业逐步向规模化、集约化和科学化方向发展,技术水平有了大幅度提高。

随着近年来国家相关科研项目的启动,中国的设施农业有了较快发展,设施面积和设施水平不断提高。

近代温室的发展经历了改良型日光温室、大型玻璃温室和现代化温室三个阶段,但由于各地区生产状况、经济条件和利用目的的差异,至今各阶段不同类型的温室依然并存。

国外温室发展现状。

国外温室栽培的起源以罗马为最早。

罗马的哲学家塞内卡(Seneca,公元前3年至公元69年)记载了应用云母片作覆盖物生产早熟黄瓜。

20世纪70年代以来,西方发达国家在设施农业上的投入和补贴较多,设施农业发展迅速。

目前,全世界设施农业面积已达400余万公顷。

荷兰、日本、以色列、美国、加拿大等国是设施农业十分发达的国家,其设施设备标准化、种苗技术及规范化栽培技术、植物保护及采后加工商品化技术、新型覆盖材料开发与应用技术、设施环境综合调控及农业机械化技术水平等都具有较高的水平,居世界领先地位。

自20世纪70年代以来,国外设施农业发达国家在温室环境配套工程技术方面也进行了大量研究,并取得了一些技术成果。

以荷兰为代表的欧美国家设施园艺规模大、自动化程度高、生产效率高,设施农业主体没备温室内的光、水、气、肥等均实现了智能化控制;以色列的现代化温室可根据作物对环境的不同要求,通过计算机对内部环境进行自动监测和调控,实现温室作物全天候、周年性的高效生产;美国、日本等国还推出了代表当今世界最先进水平的全封闭式生产体系,即应用人工补充光照、采用网络通讯技术和视频技术进行温室环境的远程控制与诊断、由机械人或机械手进行移栽作业的“植物工厂”,大大提高了劳动生产率和产品产出率。

 

第2章系统方案设计

本章从控制系统的总体构成及原理框图对系统进行了总体分析说明,控制系统组成以后,主要通过控制器、传感器及执行器对控制变量进行分析和处理。

2.1总体方案设计

本系统采用STC89C51单片机作为微处理器,DS18B20作为温度传感器对温度进行检测,HS1101作为湿度传感器与NE555组成湿度测量模块,采用发光二极管实现报警功能,使用LCD1602对测得的温度及湿度值进行显示,使用按键对温度及湿度的设定值进行修改。

2.2系统组成及框图

系统主要有温度测量模块、湿度测量模块、显示模块、报警模块、及按键模块。

其原理框图如图2.1所示。

图2-1系统组成框图

第3章硬件设计

本温度及湿度控制系统使用STC89C51作为控制器,用DS18B20实现对温度测测量,用HS1101及NE555实现的湿度的测量,并采用LCD1602将采集的的数据显示。

现将系统硬件设计表述如下。

3.1微处理器

微处理器是控制系统的核心部件。

具有控制功能强,体积小,功耗小等一系列的优点,它在工业控制、智能仪表、节能技术改造、通讯系统、信号处理及家用电器产品中都得到了广泛的应用。

本设计采用STC89C51作为微处理器。

3.1.151单片机的主要特性

51单片机的主要特性如表3-1所示。

表3-1TC89C51主要特性表

主要功能特性

兼容MCS51指令系统

8K可反复擦写FlashROM

32个双向I/O口

256x8bit内部RAM

3个16位可编程定时/计数器中断

时钟频率0-24MHz

2个串行中断

可编程UART串行通道

2个外部中断源

共6个中断源

2个读写中断口线

3级加密位

低功耗空闲和掉电模式

软件设置睡眠和唤醒功能

3.1.2STC89C51的引脚具体介绍

STC89C51系列单片机是宏晶科技推出的新一代高速∕低功耗∕超强抗干扰的单片机,指令代码完全兼容传统8051单片机。

STC89C51单片机的外形结构为40引脚双列直插式封装,其外部管脚如图3-1所示。

图3-1STC89C51外部引脚图

STC89C51的引脚含义具体介绍如下:

1.主电源引脚(2根)

VCC(Pin40):

电源输入,接+5V电源

GND(Pin20):

接地线

2.外接晶振引脚(2根)

XTAL1(Pin19):

片内振荡电路的输入端

XTAL2(Pin20):

片内振荡电路的输出端

3.控制引脚(4根)

RST/VPP(Pin9):

复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):

地址锁存允许信号

PSEN(Pin29):

外部存储器读选通信号

EA/VPP(Pin31):

程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

4.可编程输入/输出引脚(32根)

STC89C51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

PO口(Pin39~Pin32):

8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):

8位准双向I/O口线,名称为P1.0~P1.7

P2口(Pin21~Pin28):

8位准双向I/O口线,名称为P2.0~P2.7

P3口(Pin10~Pin17):

8位准双向I/O口线,名称为P3.0~P3.7

3.1.3STC89C51的最小系统

单片机最小系统是是单片机可以工作的最小单元,包括电源、地、复位电路和晶振电路。

在此基础上可扩展外围电路。

STC89C51的最小系统如图3-2所示。

 

图3-2STC89C51的最小系统

3.2温度测量电路的实现

测温模块采用数字温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。

DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

3.2.1温度传感器的选择

温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。

超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。

我们选择DS18B20作为温度传感器。

3.2.2DS18B20介绍

DS18B20具有独特的单总线接口方式,仅需使用1个端口就能实现与单片机的双向通讯。

全数字温度转换及输出提高了信号抗干扰能力和温度测量精度。

它具有多样封装形式,适应不同硬件系统。

它的工作电压使用范围宽(3.0~5.5V),可以采用外部供电方式,也可以采用寄生电源方式,即当总线DQ为高电平时,窃取信号能量给DS18B20供电。

它还有负压特性,电源极性接反时,DS18B20不会因接错线而烧毁,但不能正常工作。

可以通过编程实现9~12位的温度转换精度设置。

DS18B20采用3脚TO-92封装,形如三极管,同时也有8脚SOIC封装,还有6脚的TSOC封装,如图3-3所示。

图3-3DS18B20的封装

其测温范围为-55~+125℃,在-10~85℃范围内,精度为±0.5℃。

每一个DS18B20芯片的ROM中存放了一个64位ID号:

前8位是产品类型编号,随后48位是该器件的自身序号,最后8位是前面56位的循环冗余校验码。

因此,一条总线上可以同时挂接多个DS18B20,实现多点测温系统。

另外用户还可根据实际情况设定非易失性温度报警上下限值TH和TL。

DS18B20检测到温度值经转换为数字量后,自动存入存储器中,并与设定值TH或TL进行比较,当测量温度超出给定范围时,就输出报警信号,并自动识别是高温超限还是低温超限。

DS18B20的6个功能指令:

(1)温度转换指令(44H)。

这个命令用于启动温度转换,无实质的数据要求。

如果微控制器在该命令之后输出读操作命令,那么DS18B20将使DQ端为低电平,表示DS18B20正忙于温度转换,不能响应该命令。

(2)写便笺式存储器(4EH)。

写便笺式存储器从TH存储单元开始,三个字节的数据将被定位在2到4号便笺式存储器单元。

所有的三个字节必须在复位钳写入便笺式存储器。

(3)读便笺式存储器(BEH)。

该指令读取便笺式存储器的内容,读出的数据将从Byte0(存储器的0号单元)开始直到第9字节(CRC校验字)被读走。

但如果不想读完所有字节,微控制器可以再任何时候输出复位信号中断其传输。

(4)复制便笺式存储器指令(48H)。

把2、3、4号存储单元的内容存储到非易失性SRAM中去。

复制期间,如果有读指令,DS18B20将把DQ置为低电平,直到转换结束,把DQ置为高电平。

(5)回读SRAM(B8H)。

将存储在SRAM中的温度报警上下限、分别率配置的内容写回相应的便笺式存储器。

(6)读电源配置结构指令(B4H)。

主控制设备发出该指令后在输出读时序,器件即会送出所使用的电源信息:

0为寄生电源,1为外接电源。

DS18B20的ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。

在进行DS18B20操作时一般有以下步骤:

(1)初始化DS18B20。

(2)ROM指令操作。

(3)便笺式存储器功能指令操作。

(4)处理或数据传送。

每一次DS18B20的操作都必须满足以上步骤,若是缺少或顺序混乱,期间将不会返回值。

3.2.3温度测量电路

采用DS18B20数字温度传感器测量温度,DS18B20与单片机是单线双向通信。

其连接电路如图3-4所示。

 

图3-4DS18B20的测温电路(DQ端接51的P2.7)

3.3湿度测量电路的实现

HS1101实际上相当于一个可变电容,它会因外部环境湿度的变化而致使电容值变化,湿度测量模块采用HS1101及NE555一起组成,将该HS1101置于NE555震荡电路中,将电容值的变化转化为与之呈反比的电压频率信号,可直接被计算机采集。

3.3.1湿度传感器的选择

传统的测量湿度使用干湿球湿度计,它虽然维护其来相当简单,只需定期给湿球加水及更换湿球纱布即可,但其精度不够、误差较大。

电子式湿度传感器是近几十年,特别是近20年才迅速发展起来的。

电子湿度传感技术由于发展快,精确性高,误差小,现在得到了广泛的应用。

我们选择电子湿度传感器HS1101测量湿度。

3.3.2HS1101介绍

HS1101是法国HUMIREL公司生产的基于独特工艺设计的电容式湿度传感器。

采用具有专利权的固态聚合物结构。

特点:

全互换性,在标准情况下不需校正;长时间饱和下快速脱湿;可以自动化焊接,包括波峰焊或水浸;高可靠性与长时间稳定性;可用于线性电压或频率输出回炉;快速反应时间。

HS1101是经过独特工艺设计的可变电容元件,这种想对湿度传感器可以大批量生产。

可以应用于办公自动化,车厢内空气质量控制,家电,工业控制系统等在需要湿度补偿的场合它也可以得到很大的应用。

HS1101如图3-5所示。

 

图3-5HS1101的等效电路及其外观

HS1101湿度传感器随着湿度的变化其电容值的变化在一定程度上是线性的,测湿电路主要利用它们之间的线性关系,可以将湿度变化转化为电容值的变化

其的等效电容值与相对湿度之间的关系如图3-2所示。

表3-2等效电容值与相对湿度之间的数值关系

相对湿度RH(%)

电容值C(PF)

相对湿度RH(%)

电容值C(PF)

0

163

60

183

10

166

70

186

20

170

80

191

30

173

90

195

40

176

100

202

50

179

3.3.3NE555振荡器

NE555是属于555系列的计时IC的其中的一种型号,555系列IC的接脚功

能及运用都是相容的,只是型号不同的因其价格不同其稳定度、省电、可产生的振荡频率也不大相同;而555是一个用途很广且相当普遍的计时IC,只需少数的电阻和电容,便可产生数位电路所需的各种不同频率之脉冲信号。

其引脚位功能配置如图3-6所示。

图3-6NE555引脚图

3.3.4湿度测量电路的实现

采用HS1101及NE555实现对湿度进行测量,其电路连接如图3-7所示(NE555的3引脚通过1k电阻接51的P2.6)。

 

 

图3-7HS1101和NE555的测湿电路

此电路位典型的555非稳态电路,555芯片外接电阻R4,R5与HS1101,构成对HS1101的充电回路。

7端通过555芯片内部的晶体管对地短路实现对HS1101的放电回路,并将引脚2,6端相连引入到片内比较器,构成一个多谐波振荡器,其中,R4相对于R5必须非常的小,但决不能低于一个最小值。

R3是防止短路的保护电阻。

555电路的非平衡电阻R6作为内部温度补偿用,目的是为了引入温度效应,使它与HS1101的温度效应相匹配。

其工作循环可以描述如下:

Thigh=C@%RH*(R4+R5)*㏑2

Tlow=C@%RH*R5*㏑2

F=1/(Thigh+Tlow)=1/(C@%RH*(2*R5+R4)*㏑2)

式中:

Thigh表示一次循环输出高电平时间,单位(s)

Tlow表示一次循环输出低电平时间,单位(s)

C@%RH表示相对湿度下HS1101的容值,单位(F)

F表示输出频率值,单位(HZ)

电路工作原理:

HS1101作为一个变化的电容器,当电源VCC接通时,HS1101两端的电压Vc=0,定时电路处于置位状态由VCC通过R4与R5对变量电容HS1101充电,当Vc达到门限电压(2/3VCC)时,定时电路翻转为复位状态,HS1101通过R5向555内部的晶体管放电,当Vc降到触发电平(1/3VCC)时,定时电路又翻转为置位状态,HS1101又开始充电,这样周而复始,形成震荡。

典型频率湿度关系如表3-3所示(参考点:

25℃,相对湿度:

55%,输出频率:

6660Hz)。

由此可以看出,空气相对湿度与555芯片输出频率存在一定线性关系。

可以通过微处理器采集555芯片的频率,经过数据处理可以直接以相对湿度的数据进行显示。

表3-3相对湿度与频率的关系

相对湿度值/%

输出频率值/Hz

相对湿度值/%

输出频率值/kHz

0

7351

60

6600

10

7224

70

6468

20

7100

80

6330

30

6976

90

6186

40

6853

100

6033

50

6728

3.4液晶显示及报警电路

本系统需要将测得的温

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2