单稳态555定时器.docx

上传人:b****6 文档编号:8055513 上传时间:2023-05-12 格式:DOCX 页数:36 大小:1.17MB
下载 相关 举报
单稳态555定时器.docx_第1页
第1页 / 共36页
单稳态555定时器.docx_第2页
第2页 / 共36页
单稳态555定时器.docx_第3页
第3页 / 共36页
单稳态555定时器.docx_第4页
第4页 / 共36页
单稳态555定时器.docx_第5页
第5页 / 共36页
单稳态555定时器.docx_第6页
第6页 / 共36页
单稳态555定时器.docx_第7页
第7页 / 共36页
单稳态555定时器.docx_第8页
第8页 / 共36页
单稳态555定时器.docx_第9页
第9页 / 共36页
单稳态555定时器.docx_第10页
第10页 / 共36页
单稳态555定时器.docx_第11页
第11页 / 共36页
单稳态555定时器.docx_第12页
第12页 / 共36页
单稳态555定时器.docx_第13页
第13页 / 共36页
单稳态555定时器.docx_第14页
第14页 / 共36页
单稳态555定时器.docx_第15页
第15页 / 共36页
单稳态555定时器.docx_第16页
第16页 / 共36页
单稳态555定时器.docx_第17页
第17页 / 共36页
单稳态555定时器.docx_第18页
第18页 / 共36页
单稳态555定时器.docx_第19页
第19页 / 共36页
单稳态555定时器.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

单稳态555定时器.docx

《单稳态555定时器.docx》由会员分享,可在线阅读,更多相关《单稳态555定时器.docx(36页珍藏版)》请在冰点文库上搜索。

单稳态555定时器.docx

单稳态555定时器

一、555集成电路原理

555时基电路是一种将模拟功能与逻辑功能巧妙结合在同一硅片上的组合集成电路。

它设计新颖,构思奇巧,用途广泛,备受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。

1972年,美国西格尼蒂克斯公司(Signetics)研制出TmerNE555双极型时基电路,设计原意是用来取代体积大,定时精度差的热延迟继电器等机械式延迟器。

但该器件投放市场后,人们发现这种电路的应用远远超出原设计的使用范围,用途之广几乎遍及电子应用的各个领域,需求量极大。

美国各大公司相继仿制这种电路1974年西格尼蒂克斯公司又在同一基片上将两个双极型555单元集成在一起,取名为NF556。

1978年美国英特锡尔公司(Intelsil)研制成功CMOS型时基电路ICM5551CM556,后来又推出将四个时基电路集成在一个芯片上的四时基电路558由于采用CMOS型工艺和高度集成,使时基电路的应用从民用扩展到火箭、导弹,卫星,航天等高科技领域。

在这期间,日本、西欧等各大公司和厂家也竞相仿制、生产。

尽管世界各大半导体或器件公司、厂家都在生产各自型号的555/556时基电路,但其内部电路大同小异,且都具有相同的引出功能端。

  时基集成电路555工作原理如下:

图a所示为555时基电路内部电路图。

管脚排列如图b所示。

整个电路包括分压器,比较器,基本RS触发器和放电开关四个部分。

(1)分压器由三个5kW的电阻串联组成分压器,其上端接电源VCC(8端),下端接地(1端),为两个比较器A1、A2提供基准电平。

使比较器A1的“+”端接基准电平2VCC/3(5端),比较器A2的“-”端接VCC/3。

如果在控制端(5端)外加控制电压。

可以改变两个比较器的基准电平。

不用外加控制电压时,可用0.01mF的电容使5端交流接地,以旁路高频干扰。

(2)比较器A1、A7是两个比较器。

其“+”端是同相输人端,“-”端是反相输入端。

由于比较器的灵敏度很高,当同相输入端电平略大于反相端时,其输出端为高电平;反之,当同相输入端电平略小于反相输人端电平时,其输出端为低电平。

因此,当高电平触发端(6端)的触发电平大于2VCC/3时,比较器A1的输出为低电平;反之输出为高电平。

当低电平触发端(2端)的触发电平略小于VCC/3时,比较器A2的输出为低电平;反之,输出为高电平。

(3)基本RS触发器比较器A1和A2的输出端就是基本RS触发器的输入端RD和SD。

因此,基本RS触发器的状态(3端的状态)受6端和2端的输入电平控制。

图中的4端是低电平复位端。

在4端施加低电平时,可以强制复位,使Q=0。

平时,将4端接电源VCC的正极。

  (4)放电开关图中晶体管VT构成放电开关,使用时将其集电极接正电源,基极接基本RS触发器的Q端。

当Q=0时,VT截止;当Q=1时,VT饱合导通。

可见晶体管VT作为放电开关,其通断状态由触发器的状态决定。

从CA555时基电路的内部等效电路图中可看到,VTl-VT4、VT5、VT7组成上比较器Al,VT7的基极电位接在由三个5kΩ电阻组成的分压器的上端,电压为2/3VDD;VT9-VT13组成下比较器A2,VTl3的基极接分压器的下端,参考电1/3VDD。

在电路设计时,要求组成分压器的三个5kΩ电阻的阻值严格相等,以便给出比较精确的两个参考电位1/3VDD和2/3VDD。

VTl4-VTl7与一个4.7kΩ的正反馈电阻组合成一个双稳态触发电路。

VTl8-VT21组成一个推挽式功率输出级,能输出约200mA的电流。

VT8为复位放大级,VT6是一个能承受50mA以上电流的放电晶体三极管。

双稳态触发电路的工作状态由比较器A1、A2的输出决定。

555时基电路的工作过程如下:

当2脚,即比较器A2的反相输入端加进电位低于1/3VDD的触发信号时,则VT9、VTll导通,给双稳态触发器中的VTl4提供一偏流,使VTl4饱和导通,它的饱和压降Vces箝制VTl5的基极处于低电平,使VTl5截止,VTl7饱和,从而使VTl8截止,VTl9导通,VT20完全饱和导通,VT21截止。

因此,输出端3脚输出高电平。

此时,不管6端(阈值电压)为何种电平,由于双稳态触发器(VTl4-VTl7)中的4.7kΩ电阻的正反馈作用(VTl5的基极电流是通过该电阻提供的),3脚输出高电平状态一直保持到6脚出现高于1/3VDD的电平为止。

当触发信号消失后,即比较器A2反相输入端2脚的电位高于1/3VDD,则VT9、VTll截止,VTl4因无偏流而截止,此时若6脚无触发输入,则VTl7的Vces饱和压降通过4.7kΩ电阻维持VTl3截止,使VTl7饱和稳态不变,故输出端3脚仍维持高电平。

同时,VTl8的截止使VT6也截止。

当触发信号加到6脚时,且电位高于2/3VDD时,则VTl、VT2、VT3皆导通。

此时,若2脚无外加触发信号使VT9、VTl4截止,则VT3的集电极电流供给VTl5偏流,使该级饱和导通,导致VTl7截止,进而VTl8导通,VTl9、VT2。

都截止,VT21饱和导通,故3脚输出低电平。

当6脚的触发信号消失后,即该脚电位降至低于2/3VDD时,则VTl、VT2、VT3皆截止,使VTl5得不到偏流。

此时,若2脚仍无触发信号,则VTl5通过4.7kΩ电阻得到偏流,使VTl5维持饱和导通,VTl7截止的稳态,使3脚输出端维持在低电平状态。

同时,VTl8的导通,使放电级VT6饱和导通。

通过上面两种状态的分析,可以发现:

只要2脚的电位低于1/3VDD,即有触发信号加入时,必使输出端3脚为高电平;而当6脚的电位高于2/3VDD时,即有触发信号加进时,且同时2脚的电位高于1/3VDD时,才能使输出端3脚有低电平输出。

4脚为复位端。

当在该脚加有触发信号,即其电位低于导通的饱和压降0.3V时,VT8导通,其发射极电位低于lV,因有D3接入,VTl7为截止状态,VTl8、VT21饱和导通,输出端3脚为低电平。

此时,不管2脚、6脚为何电位,均不能改变这种状态。

因VT8的发射极通过D3及VTl7的发射极到地,故VT8的发射极电位任何情况下不会比1.4V电压高。

因此,当复位端4脚电位高于1.4V时,VT8处于反偏状态而不起作用,也就是说,此时输出端3脚的电平只取决于2脚、6脚的电位。

根据上面的分析,CA555时基电路的内部等效电路可简化为如图所示的等效功能电路。

显然,555电路(或者专556电路)内含两个比较器A1和A2、一个触发器、一个驱动器和一个放电晶体管。

两个比较器分别被电阻R1、R2和R3构成的分压器设定的2/3VDD和1/3VDD。

参考电压所限定。

为进一步理解其电路功能,并灵活应用555集成块,下面简要说明其作用机理。

从图1—5可见,三个5kΩ电阻组成的分压器,使内部的两个比较器构成一个电平触发器,上触发电平为2/3VDD,下触发电平为1/3VDD。

在5脚控制端外接一个参考电源Vc,可以改变上、下触发电平值。

比较器Al的输出同或非门l的输入端相接,比较器A2的输出端接到或非门2的输入端。

由于由两个或非门组成的RS触发器必须用负极极性信号触发,因此,加到比较器Al同相端6脚的触发信号,只有当电位高于反相端5脚的电位时,R—S触发器才翻转;而加到比较器A2反相端2脚的触发信号,只有当电位低于A2同相端的电位1/3DD时,R—S触发器才翻转。

通过上面对等效功能电路和CA555时基电路的内部等效电路的分析,可得出555各功能端的真值表。

引脚

2

6

4

3

7

电平

≤1/3VDD

1.4V

*

高电平

悬空状态

电平

<1/3VDD

≥2/3VDD

1.4V

低电平

低电平

电平

<1/3VDD

>2/3VDD

1.4V

保持电平

保持

电平

*

*

0.3V

低电平

低电平

由表可看出,S、R、MR的输入不一定是逻辑电平,可以是模拟电平,因此,该集成电路兼有模拟和数字电路的特色。

二、555的应用

 我们知道,555电路在应用和工作方式上一般可归纳为3类。

每类工作方式又有很多个不同的电路。

  在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:

多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。

这样一来,电路变的更加复杂。

为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。

每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。

方便大家识别、分析555电路。

下面将分别介绍这3类电路。

 

单稳类电路

单稳工作方式,它可分为3种。

见图示。

  第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。

他们的输入端的形式,也就是电路的结构特点是:

“RT-6.2-CT”和“CT-6.2-RT”。

  第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。

他们的输入特点都是“RT-7.6-CT”,都是从2端输入。

1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。

  第3种(图3)是压控振荡器。

单稳型压控振荡器电路有很多,都比较复杂。

为简单起见,我们只把它分为2个不同单元。

不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。

图中列出了2个常用电路。

  双稳类电路

  这里我们将对555双稳电路工作方式进行总结、归纳。

555双稳电路可分成2种。

  第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。

单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。

  第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

  双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。

这是双稳工作方式的结构特点。

2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。

  无稳类电路

  第三类是无稳工作方式。

无稳电路就是多谐振荡电路,是555电路中应用最广的一类。

电路的变化形式也最多。

为简单起见,也把它分为三种。

  第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。

  第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。

其中第1个单元电路(3.2.1)是应用最广的。

第2个单元电路(3.2.2)是方波振荡电路。

第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a和3.2.3b的代号。

  第三种(见图3)是压控振荡器。

由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。

图中举了两个应用实例。

  无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。

只有一个振荡电阻的可以认为是特例。

例如:

3.1.2单元可以认为是省略RA的结果。

有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。

  以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:

万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。

  各种应用电路

555触摸定时开关

  集成电路IC1是一片555定时电路,在这里接成单稳态电路。

平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。

  当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。

同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。

当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。

定时长短由R1、C1决定:

T1=1.1R1*C1。

按图中所标数值,定时时间约为4分钟。

D1可选用1N4148或1N4001。

 

  相片曝光定时器

  附图电路是用555单稳电路制成的相片曝光定时器。

用人工启动式单稳电路。

  工作原理:

  电源接通后,定时器进入稳态。

此时定时电容CT的电压为:

VCT=VCC=6V。

对555这个等效触发器来讲,两个输入都是高电平,即VS=0。

继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。

  按一下按钮开关SB之后,定时电容CT立即放到电压为零。

于是此时555电路等效触发的输入成为:

R=0、S=0,它的输出就成高电平:

V0=1。

继电器KA吸动,常开接点闭合,曝光照明灯点亮。

按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。

当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:

R=1、S=1,于是输出又翻转成低电平:

V0=0。

继电器KA释放,曝光灯HL熄灭。

暂稳态结束,有恢复到稳态。

  曝光时间计算公式为:

T=1.1RT*CT。

本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。

  电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。

 

  单电源变双电源电路

附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:

1的方波。

3脚为高电平时,C4被充电;低电平时,C3被充电。

由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。

本电路输出电流超过50mA。

 

  简易催眠器

  时基电路555构成一个极低频振荡器,输出一个个短的脉冲,使扬声器发出类似雨滴的声音(见附图)。

扬声器采用2英寸、8欧姆小型动圈式。

雨滴声的速度可以通过100K电位器来调节到合适的程度。

如果在电源端增加一简单的定时开关,则可以在使用者进入梦乡后及时切断电源。

 

  直流电机调速控制电路

  这是一个占空比可调的脉冲振荡器。

电机M是用它的输出脉冲驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲占空比越小,电机电驱电流就越大,转速加快。

因此调节电位器RP的数值可以调整电机的速度。

如电极电驱电流不大于200mA时,可用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。

  图中VD3是续流二极管。

在功放管截止期间为电驱电流提供通路,既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功放管。

电容C2和电阻R3是补偿网络,它可使负载呈电阻性。

整个电路的脉冲频率选在3~5千赫之间。

频率太低电机会抖动,太高时因占空比范围小使电机调速范围减小。

 

  用555制作的D类放大器

  由IC555和R1、R2、C1等组成100KHz可控多谐振荡器,占空比为50%,控制端5脚输入音频信号,3脚便得到脉宽与输入信号幅值成正比的脉冲信号,经L、C3接调、滤波后推动扬声器。

 

  风扇周波调速电路

  夏天要来了,电风扇又得派上用场。

这里介绍一个电风扇模拟阵风周波调速电路,可以为将我们家里的老式风扇增加一个实用功能,也算是一个迎接夏天到来的准备吧。

下面介绍其工作原理。

  电路见图1a。

电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。

在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。

在NE555的3脚输出低电平期间,双向开关关断,风扇停转。

  MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用MOC3061的内部双向开关来控制电风扇电机的运转。

RW为占空比调节电位器,亦即电风扇单位时间内(本电路数据约为20秒)送风时间的调节,改变C2的取值或RW的取值可改变控制周期。

  图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。

制作时,可参考图示参数选择器件。

由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。

 

电热毯温控器

  一般电热毯有高温、低温两档。

使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时醒来会觉得温度不够。

这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。

  工作原理:

  电路如图所示。

图中IC为NE555时基电路。

RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。

220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。

室温下接通电源,因已调V2

当V6

实际证明,调节RP2使V2=12V6时,温差为零;而V2="V6时最大。

三、集成定时器555的实例

   集成定时器555是一种将模拟功能与逻辑功能巧妙地结合在一起的中规模集成电路。

   该电路功能灵活、适用范围广,只要在外部配上几个适当的阻容元件,就可以很方便地构成多谐振荡器、施密特触发器和单稳态触发器等电路,完成脉冲信号的产生、定时和整形等功能。

因而在控制、定时、检测、仿声、报警等方面有着广泛应用。

常用的集成定时器有5G555(TTL电路)和CC7555(CMOS电路)等。

   下面以5G555为例说明其功能和应用。

   一.5G555的电路结构与逻辑功能 

   1.电路结构

   

(1)结构图和管脚排列图

   5G555的电路结构图和管脚排列图分别如图7.32(a)、(b)所示。

         

图7.325G555的电路结构图和管脚排列图

   

(2)组成

   集成定时器5G555由电阻分压器、电压比较器、基本R-S触发器、放电三极管和输出缓冲器五部分组成。

定时器的功能主要取决于比较器C1和C2,由它们的输出直接控制基本R-S触发器的状态和放电三极管T的状态,从而决定整个电路的输出状态。

   ①电阻分压器

   由3个阻值均为5kΩ的电阻串联构成分压器,为电压比较器C1和C2提供参考电压UR1、UR2。

   ●当电压控制端CO不外加控制电压Uco时,

   ●当电压控制端CO外加控制电压Uco时,比较器的参考电压将发生变化,相应地电路的阈值、触发电平也将随之改变,并进而影响电路的定时参数。

   为了防止干扰,当不外加控制电压时,CO端一般通过一个小电容(如0.01μF)接地,以旁路高频干扰。

   ②电压比较器C1和C2

   电压比较器C1和C2是两个结构完全相同的理想运算放大器。

当运算放大器的同相输入U+大

于反相输入U-时,其输出为高电平1信号;而当U+小于U-时,其输出为低电平0信号。

   比较器C1的同相输入端(+端)接参考电压UR1,反相输入端(-端)与阈值输入端TH相连,其输出端R的状态取决于阈值输入信号UTH与UR1的比较结果。

   当UR1>UTH时,输出R为高电平1;当UR1<UTH时,输出R为低电平0。

   比较器C2的同相输入端(+端)与触发输入端相连,反相输入端(-端)接参考电压UR2,其输出端S的状态取决于触发输入信号UTR与UR2的比较结果。

   当UTR>UR2时,输出S为高电平1;UTR<UR2时,输出S为低电平0。

 

   ③基本R-S触发器

   两个与非门G1和G2构成了低电平触发的基本R-S触发器。

触发器输入信号R、S为比较器C1、C2的输出,触发器Q端状态为电路输出端OUT的状态,触发器Q端状态控制放电三极管T的导通与截止。

当外部复位信号RD为0(低电平)时,可使Uo=0,定时器输出直接复位。

   ④放电三极管T

   放电三极管T构成泄放电路,T的集电极用输出端D表示。

如果将D端经过一个外接电阻接至电源,即可组成一个反相器。

当Q=0(Q=1)时,T导通,D端输出为低电平0;当Q=1(Q=0)时,T截止,D端输出为高电平1。

可见,D端的逻辑状态与输出端OUT的状态相同。

   ⑤输出缓冲器

   输出缓冲器G3的作用是提高负载能力,并隔离负载对定时器的影响。

   2.5G555的逻辑功能

   

(1)外接控制电压时,5G555的逻辑功能

   当CO端外接控制电压时,根据各部分电路的功能,可归纳出5G555的逻辑功能如表7.11所示。

表7.115G555的功能表

输      入 

比较器输出

输    出

uTH

uTR

RD

R(C1)

S(C2)

OUT

放电三极管T

d

<UR1

<UR1

>UR1

d

<UR2 

>UR2

>UR2

0

1

1

d

1

1

0

d

0

1

1

0

1

不变

0

导通

截止

不变

导通

   

(2)不外接控制电压时,5G555的逻辑功能

   当CO端不外接控制电压时,5G555的逻辑功能如表7.12所示。

表7.125G555不外接控制电压时的功能表

输    入

输   出

uTH

uTR

RD

OUT

放电三极管

d

d

0

0

导通

1

1

截止

1

不变

不变

0

0

导通

   二.5G555的应用举例

   由于5G555具有电源范围宽、定时精度高、使用方法灵活、带负载能力强等特点,所以它在脉冲信号产生、定时与整形等方面的应用非常广泛。

   1.用5G555构成多谐振荡器

 

   多谐振荡器又称矩形波发生器,它有两个暂稳态,电路一旦起振,两个暂稳态就交替变化,输出矩形脉冲信号。

   

(1)电路构成及工作原理

   ①电路构成

   用5G555构成的多谐振荡器电路及其工作波形图如图7.33(a)、(b)所示。

图7.33用5G555构成的多谐振荡器电路及其工作波形图

    从图7.33(a)可知,电路由5G555外加两个电阻和一个电容组成。

5G555的D端(即放电三极管T的集电极)经R1接至电源UCC,构成一个反相器。

电阻R2和电容C构成积分电路。

积分电路的电容电压uC作为电路输入接至输入端TH和TR。

   ②电路的工作原理

   电路的工作原理可归纳为电容C充电、放电的过程。

 

    

(2)输出脉冲信号参数的计算

矩形波振荡周期TW的近似计算公式为

TW≈tH+tL≈0.7(R1+2R2)C

矩形波振荡频率f的近似计算公式为

            

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2