电气工程毕业设计外文资料翻译Word格式文档下载.docx

上传人:b****6 文档编号:8448970 上传时间:2023-05-11 格式:DOCX 页数:15 大小:33.89KB
下载 相关 举报
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第1页
第1页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第2页
第2页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第3页
第3页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第4页
第4页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第5页
第5页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第6页
第6页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第7页
第7页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第8页
第8页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第9页
第9页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第10页
第10页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第11页
第11页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第12页
第12页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第13页
第13页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第14页
第14页 / 共15页
电气工程毕业设计外文资料翻译Word格式文档下载.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

电气工程毕业设计外文资料翻译Word格式文档下载.docx

《电气工程毕业设计外文资料翻译Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《电气工程毕业设计外文资料翻译Word格式文档下载.docx(15页珍藏版)》请在冰点文库上搜索。

电气工程毕业设计外文资料翻译Word格式文档下载.docx

外文资料原文:

AVirtualEnvironmentforProtectiveRelayingEvaluationandTesting

A.P.SakisMeliopoulosandGeorgeJ.Cokkinides

Abstract—Protectiverelayingisafundamentaldisciplineofpowersystemengineering.AtGeorgiaTech,weofferthreecoursesthatcoverprotectiverelaying:

anundergraduatecoursethatdevotesone-thirdofthesemesteronrelaying,agraduatecourseentitled“PowerSystemProtection,”andathree-and-a-half-dayshortcourseforpracticingengineers.Tomaximizestudentunderstandingandtrainingontheconcepts,theory,andtechnologyassociatedwithprotectiverelaying,wehavedevelopedanumberofeducationaltools,allwrappedinavirtualenvironment.Thevirtualenvironmentincludesa)apowersystemsimulator,b)asimulatorofinstrumentationforprotectiverelayingwithvisualizationandanimationmodules,c)specificprotectiverelaymodelswithvisualizationandanimationmodules,andd)interfacestohardwaresothattestingofactualrelayingequipmentcanbeperformed.Werefertothissetofsoftwareasthe“virtualpowersystem.”Thevirtualpowersystempermitsthein-depthcoverageoftheprotectiverelayingconceptsinminimumtimeandmaximizesstudentunderstanding.Thetoolisnotusedinapassiveway.Indeed,thestudentsactivelyparticipatewithwell-designedprojectssuchasa)designandimplementationofmultifunctionalrelays,b)relaytestingforspecificdisturbances,etc.Thepaperdescribesthevirtualpowersystemorganizationand“engines,”suchassolver,visualization,andanimationofprotectiverelays,etc.Italsodiscussestheutilizationofthistoolinthecoursesviaspecificapplicationexamplesandstudentassignments.

IndexTerms—Algebraiccompanionform,animation,relaying,time-domainsimulation,visualization.

I.INTRODUCTION

RELAYINGhasalwaysplayedaveryimportantroleinthesecurityandreliabilityofelectricpowersystems.Asthetechnologyadvances,relayinghasbecomemoresophisticatedwithmanydifferentoptionsforimprovedprotectionofthesystem.Itisindisputablethatrelayinghasmadesignificantadvanceswithdramaticbeneficialeffectsonthesafetyofsystemsandprotectionofequipment.Yet,becauseofthecomplexityofthesystemandmultiplicityofcompetingfactors,relayingisachallengingdiscipline.

Despitealloftheadvancesinthefield,unintendedrelayoperations(misoperations)dooccur.Manyeventsofoutagesandblackoutscanbeattributedtoinappropriaterelayingsettings,unanticipatedsystemconditions,andinappropriateselectionofinstrumenttransformers.Designofrelayingschemesstrivestoanticipateallpossibleconditionsforthepurposeofavoidingundesirableoperations.Practicingrelayengineersutilizeatwo-stepproceduretominimizethepossibilityofsuchevents.First,inthedesignphase,comprehensiveanalysesareutilizedtodeterminethebestrelayingschemesandsettings.Second,ifsuchaneventoccurs,anexhaustivepost-mortemanalysisisperformedtorevealtherootcauseoftheeventandwhat“wasmissed”inthedesignphase.Thepost-mortemanalysisoftheseeventsisfacilitatedwiththeexistingtechnologyofdisturbancerecordings(viafaultdisturbancerecordersorembeddedinnumericalrelays).Thisprocessresultsinaccumulationofexperiencethatpassesfromonegenerationofengineerstothenext.

Animportantchallengeforeducatorsisthetrainingofstudentstobecomeeffectiveprotectiverelayingengineers.Studentsmustbeprovidedwithanunderstandingofrelayingtechnologythatencompassesthemultiplicityoftherelayingfunctions,communications,protocols,andautomation.Inaddition,adeepunderstandingofpowersystemoperationandbehaviorduringdisturbancesisnecessaryforcorrectrelayingapplications.Intoday’scrowdedcurricula,thechallengeistoachievethistrainingwithinaveryshortperiodoftime,forexample,onesemester.Thispaperpresentsanapproachtomeetthischallenge.Specifically,weproposetheconceptofthevirtualpowersystemforthepurposeofteachingstudentsthecomplextopicofprotectiverelayingwithinashortperiodoftime.

Thevirtualpowersystemapproachispossiblebecauseoftwofactors:

a)recentdevelopmentsinsoftwareengineeringandvisualizationofpowersystemdynamicresponses,andb)thenewgenerationofpowersystemdigital-object-orientedrelays.Specifically,itispossibletointegratesimulationofthepowersystem,visualization,andanimationofrelayresponseandrelaytestingwithinavirtualenvironment.Thisapproachpermitsstudentstostudycomplexoperationofpowersystemsandsimultaneouslyobserverelayresponsewithprecisionandinashorttime.

Thepaperisorganizedasfollows:

First,abriefdescriptionofthevirtualpowersystemisprovided.Next,themathematicalmodelstoenablethefeaturesofthevirtualpowersystemarepresentedtogetherwiththemodelingapproachforrelaysandrelayinstrumentation.Finally,fewsamplesofapplicationsofthistoolforeducationalpurposesarepresented.

II.VIRTUALPOWERSYSTEM

Thevirtualpowersystemintegratesanumberofapplicationsoftwareinamultitaskingenvironmentviaaunifiedgraphicaluserinterface.Theapplicationsoftwareincludesa)adynamicpowersystemsimulator,b)relayobjects,c)relayinstrumentationobjects,andd)animationandvisualizationobjects.Thevirtualpowersystemhasthefollowingfeatures:

1)continuoustime-domainsimulationofthesystemunderstudy;

2)abilitytomodify(orfault)thesystemunderstudyduringthesimulation,andimmediatelyobservetheeffectsofthechanges;

3)advancedoutputdatavisualizationoptionssuchasanimated2-Dor3-Ddisplaysthatillustratetheoperationofanydeviceinthesystemunderstudy.

Theabovepropertiesarefundamentalforavirtualenvironmentintendedforthestudyofprotectiverelaying.Thefirstpropertyguaranteestheuninterruptedoperationofthesystemunderstudyinthesamewayasinaphysicallaboratory:

onceasystemhasbeenassembled,itwillcontinuetooperate.Thesecondpropertyguaranteestheabilitytoconnectanddisconnectdevicesintothesystemwithoutinterruptingthesimulationofthesystemortoapplydisturbancessuchasafault.Thispropertyduplicatesthecapabilityofphysicallaboratorieswhereonecanconnectacomponenttothephysicalsystemandobservethereactionimmediately(e.g.,connectinganewrelaytothesystemandobservingtheoperationoftheprotectiverelayinglogic,applyingadisturbanceandobservingthetransientsaswellastherelaylogictransients,etc.).Thethirdpropertyduplicatestheabilitytoobservethesimulatedsystemoperation,inasimilarwayasinaphysicallaboratory.Unlikethephysicallaboratorywhereonecannotobservetheinternaloperationofarelay,motor,etc.,thevirtualpowersystemhasthecapabilitytoprovideavisualizationandanimationoftheinternal“workings”ofarelay,motor,etc.Thiscapabilitytoanimateandvisualizetheinternal“workings”ofarelay,aninstrumentationchannel,oranyotherdevicehassubstantialeducationalvalue.

ThevirtualpowersystemimplementationisbasedontheMSWindowsmultidocument-viewarchitecture.Eachdocumentobjectconstructsasinglesolverobject,whichhandlesthesimulationcomputations.Thesimulatedsystemisrepresentedbyasetofobjects—oneforeachsystemdevice(i.e.generators,motors,transmissionlines,relays,etc).Thedocumentobjectcangenerateanynumberofviewwindowobjects.Twobasicviewclassesareavailable:

a)schematicviewsandb)resultvisualizationviews.Schematicviewobjectsallowtheusertodefinethesimulatedsystemconnectivitygraphically,bymanipulatingasinglelinediagramusingthemouse.Resultvisualizationviewsallowtheusertoobservecalculatedresultsinavarietyofways.Severaltypesofresultvisualizationviewsaresupportedandwillbediscussedlater.

Fig.1illustratestheorganizationofdeviceobjects,networksolver,andviewobjectsandtheirinteractions.Thenetworksolverobjectisthebasicenginethatprovidesthetime-domainsolutionofthedeviceoperatingconditions.Tomaintainobjectorientation,eachdeviceisrepresentedwithageneralizedmathematicalmodelofaspecificstructure,thealgebraiccompanionform(ACF).Themathematicsofthealgebraiccompanionformaredescribedinthenextsection.Implementationwise,thenetworksolverisanindependentbackgroundcomputationalthread,allowingbothschematiceditorandvisualizationviewstobeactiveduringthesimulation.Thenetworksolvercontinuouslyupdatestheoperatingstatesofthedevicesand“feeds”allotherapplications,suchasvisualizationviews,etc.

Thenetworksolverspeedisuserselected,thusallowingspeeding-uporslowing-downthevisualizationandanimationspeed.Themultitaskingenvironmentpermitssystemtopologychanges,deviceparameterchanges,orconnectionofnewdevices(motors,faults)tothesystemduringthesimulation.Inthisway,theusercanimmediatelyobservethesystemresponseinthevisualizationviews.

Thenetworksolverinterfaceswiththedeviceobjects.Thisinterfacerequiresatminimumthreevirtualfunctions:

Initialization:

Thesolvercallsthisfunctiononcebeforethesimulationstarts.Itinitializesalldevice-dependentparametersandmodelsneededduringthesimulation.

Reinitialization:

Thesolvercallsthisfunctionanytimetheusermodifiesanydeviceparameter.Itsfunctionissimilartotheinitializationvirtualfunction.

Timestep:

Thesolvercallsthisfunctionateverytimestepofthetime-domainsimulation.Ittransfersthesolutionfromtheprevioustimesteptothedeviceobjectandupdatesthealgebraiccompanionformofthedeviceforthe

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2