红外光谱在药物分析中的应用Word文档下载推荐.docx

上传人:b****6 文档编号:8451376 上传时间:2023-05-11 格式:DOCX 页数:12 大小:62.75KB
下载 相关 举报
红外光谱在药物分析中的应用Word文档下载推荐.docx_第1页
第1页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第2页
第2页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第3页
第3页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第4页
第4页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第5页
第5页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第6页
第6页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第7页
第7页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第8页
第8页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第9页
第9页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第10页
第10页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第11页
第11页 / 共12页
红外光谱在药物分析中的应用Word文档下载推荐.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

红外光谱在药物分析中的应用Word文档下载推荐.docx

《红外光谱在药物分析中的应用Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《红外光谱在药物分析中的应用Word文档下载推荐.docx(12页珍藏版)》请在冰点文库上搜索。

红外光谱在药物分析中的应用Word文档下载推荐.docx

红外光谱应用特点

红外光谱技术在药物分析中的应用

1摘要

近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5μm之间,用波数表示时则在13330—4000cm-1之间。

由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。

近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。

在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。

2现代红外光谱分析技术

现代近红外光谱(NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

  我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。

但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。

但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。

随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的近红外光谱分析仪器市场。

由此也可以看出近红外光谱分析技术在分析界炙手可热的发展趋势。

在不久的未来,近红外光谱分析技术在分析界必将为更多的人所认识和接受。

  现代近红外光谱分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。

是将近红外光谱所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。

  与常规分析技术不同,近红外光谱是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。

具体的分析过程主要包括以下几个步骤:

一是选择有代表性的样品并测量其近红外光谱;

二是采用标准或认可的参考方法测定所关心的组分或性质数据;

三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;

四是未知样品组分或性质的测定。

由近红外光谱分析技术的工作过程可见,现代近红外光谱分析技术包括了近红外光谱仪、化学计量学软件和应用模型三部分。

三者的有机结合才能满足快速分析的技术要求,是缺一不可的。

  与传统分析技术相比,近红外光谱分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次近红外光谱的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。

光谱测量时不需要对分析样品进行前处理;

分析过程中不消耗其它材料或破坏样品;

分析重现性好、成本低。

对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。

因为建立近红外光谱方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。

  近红外光谱主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。

加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。

主要的应用领域包括:

石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。

在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;

在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;

在医药领域可以测定药品中有效成分,组成和含量;

亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。

3近红外光谱技术的发展历史

近红外光谱技术的发展大体上可分为5个阶段。

在发现近红外谱区后的150年中,其应用极为有限,被行内人士称为“被遗忘的谱区”。

直到20世纪50年代,由于近红外仪器的进步和Norris等人所做的大量研究工作,近红外光谱分析技术首先在农产品品质快速分析中得到广泛应用。

由于经典近红外光谱分析的灵敏度低、抗干扰性差,该项技术的研究和应用进入了一个沉默时期。

80年代以后,计算机技术的飞速发展,带动了仪器数字化和化学计量学(Chemometrics)学科的发展,也使以弱信号和多元信息处理为基本特征的近红外光谱分析获得了技术支持和依靠。

90年代以后,近红外光谱技术步入快速发展时期。

计算机技术、数字化仪器和化学计量学方法的有机结合,形成了现代近红外光谱技术。

化学计量学方法和分析软件成为现代近红外光谱技术的重要组成部分。

在欧美等发达国家中近红外光谱分析仪已成为品管实验中必备的仪器。

4红外光的区划

红外线:

波长在0.76~500μm(1000μm)范围内的电磁波

近红外区(NIR):

0.76~2.5μm(760~2500nm)-OH和-NH倍频吸收区

中红外区(MIR):

2.5~25μm(4000~400cm-1)振动、伴随转动光谱

远红外区(FIR):

25~500μm纯转动光谱

紫外-可见(UV-VIS):

190~900nm电子光谱

5红外光谱的作用

绝大多数有机化合物的基频吸收带出现在MIR光

区。

基频振动是红外光谱中吸收最强的振动,最适于

进行红外光谱的定性和定量分析。

中红外光谱仪最为

成熟、简单,因此它是应用极为广泛的光谱区。

通常,

中红外光谱法又简称为红外光谱法。

红外光谱是鉴别物质和分析物质化学结构的有效

手段,已被广泛应用于物质的定性鉴别、物相分析和

定量测定,并用于研究分子间和分子内部的相互作用

6近红外光谱技术的特点

与传统化学分析方法相比,近红外光谱分析技术有鲜明的技术特点

1、分析速度快。

扫描速度快,可在数十秒内获得一个样品的全光谱图,通过数学模型既可快速计算出样品的浓度。

2、多种成分同时分析。

一次全光谱扫描,可获得多种成分的光谱信息,通过建立不同的数学模型,就可定量分析样品的多种物质成分。

3、无污染分析。

样品不需特别的预处理,不使用有毒有害试剂。

根据样品的物质状态和透光能力采用透射或漫反射方式测定,可直接测定不经预处理的液态、固态或气态样品。

4、无损伤分析。

测定过程不破坏或消耗样品,不影响外观、内在结构和性质。

5、实时分析和远距离测定。

实时在线分析特别适合工业生产上应用。

利用光导纤维技术远离主机取样,将光谱信号实时传送回主机,直接计算出样品成分的含量。

6、操作简单,分析成本低。

除需要电能外,不需要任何耗材,大大地降低测试费用。

操作上不需要专门技能和特别训练。

近红外光谱分析技术也有其固有的弱点。

该项技术是一种间接的分析技术,它必须依赖常规的化学分析方法,测定出特定背景范围内多个标准样品成分的化学值,利用化学计量学方法建立数学模型,并通过数学模型计算待测样品的成分含量。

数学模型预测的准确性与常规化学分析的准确性、建模样品的代表性、模型使用的合理性有很大关系。

另外,近红外光谱分析的测试灵敏度较低,待测样品的成分含量一般不少于0.1%。

7近红外仪器的类型和特点

近红外光谱仪器已由传统的滤光片型、光栅色散型,发展到目前流行的主导产品傅立叶变换型。

滤光片型仪器是主要用于专用分析仪器。

该类仪器的波长准确性差,测量准确性也就差,建立的数学模型不能转移。

由于滤光片镀膜分子经常变化,引起内部波长漂移,所建立的分析数学模型要经常校正误差,使用很麻烦,应用局限性大,数学模型不能传递。

该类仪器的价格也便宜。

光栅色散型仪器是70-80年代常用的仪器类型,其采用全息光栅分光、PbS或其他光敏元件作检测器,有较高的信噪比,但波长准确度仍较低,数学模型仍不能传递。

仪器中可动部分可能磨损,影响光谱采集的可靠性,不适合在线分析。

该类仪器的价格较滤光片型仪器贵。

傅立叶变换近红外光谱仪是90年代中期以后市场的主导产品,其较传统的滤光片型和光栅色散型近红外光谱仪有更为明显的优点,表现为波长准确度和分辨率更高、扫描速度更快、不受自然散光影响、检出限量高等;

由于这些优点,用户在使用时不需要对仪器进行外部校准,数学模型在同类型仪器间转移和传递成为可能。

另外,光导纤维探头和积分球采样系统等附件的应用,对不规则样品的分析测定就更加方便。

样品的形态可以是固体、粉末状、颗粒状、液体,甚至气体。

可远距离提取样品光谱信息,从而实现在线分析。

这些技术的发展,大大拓宽了近红外光谱分析的应用范围。

该类仪器价格较贵。

8NIR-AOTF光谱技术

近红外光谱最突出的研究进展是能够实现药品和食品生产的在线过程控制,因此在多种物质品质检测方面有着良好的应用前景和市场潜力。

NIR-AOTF是20世纪90年代近红外光谱(near-infraredspectroscopy,NIR)最突出的进展——声光可调(acousto-optictunablefilter,AOTF)近红外光谱仪。

它不仅结构简单、体积小、重现性好,而且采用了全固态一体化的密封设计,具有优异的抗震性能,且对温度、湿度、灰尘均有较好的适应性。

NIR-AOTF在国外主要用于制药过程控制,推广NIR-AOTF光谱技术在制药过程控制领域的应用,对提高药品质量有重要意义。

8.1NIR-AOTF光谱技术的原理和性能

NIR-AOTF的核心分光器件AOTF采用单晶体设计。

因设备内部构造简单、光径最短,保证了最大光学效能输出,满足了生产在线快速无损检测需求。

近红外光谱区(780~2526nm)的光谱信息来源于分子内部振动的倍频吸收和合频吸收。

传统的近红外光谱分析的专一性差、模型性能不稳定、难以实现在线检测[1,2]。

随着计算机技术和光学技术的迅速发展,NIR-AOTF除具有传统近红外傅立叶变换分光系统的优点外[3],还具有以下性能:

(1)信噪比比傅立叶变换技术高10~100倍,可以检测药物中痕量物质的含量;

(2)采用全固化设计,没有任何可移动和转动的部件,具有很好的抗震性能,不仅可随混合器一起转动,而且仪器不需要定期校准,长时间运行数据稳定可靠,适用于在线连续长时间检测;

(3)在中药提取和浓缩的在线检测中,仪器不受温度、湿度、灰尘等外界环境的影响,不受管路中气泡的影响,不需预处理就能准确测定提取液和浓缩液中万分之几的低含量指标;

(4)光谱测量技术与化学计量学学科有机结合,具有强大的软件功能,包括光谱采集软件SNAP!

2.03和化学计量学软件TheUnscrambler,这些软件集成仪器能够在线实时显示各项指标数据,精度高,移植性好

8.2NIR-AOTF光谱技术在制药过程控制中的应用进展

NIR-AOTF在制药工业中的应用日趋广泛,从药物的定性、定量分析,到生产过程各阶段如提取、浓缩、合成、混合、干燥、压片及包装等的在线监控,表现出巨大的潜力。

8.2.1在原料药分析中的应用

Ulmschneider等[4]用近红外直接识别了装在密闭玻璃瓶里的9种活性药物中间体,并发展了一个用于判别分析的可转移的基础光谱库。

Blanco等[5]提出了建立用于药物原料识别近红外光谱库的步骤和策略,使用相关系数作为判别准则,库中化合物的数量可根据需要扩容。

对于用近红外谱图库难以细分的相似物,他们提出建立层叠子库的设想,即用马氏距离或者残余方差方法进一步识别,能够分类和判别,效果良好。

Li等[6]用近红外定标模型,根据原料药在不同温度及湿度条件下A、B2种晶型有着不同的物理性质,对晶型B进行了离线和在线过程监控,效果较满意。

8.2.2在药物制剂质量控制中的应用

制剂过程控制分析是药物分析的重要研究内容。

NIR-AOTF的最大特点是操作简便、快速,不破坏样品进行原位测定,不使用化学试剂,不必预处理样品,可直接分析颗粒状、固体状、糊状、不透明的样品。

这些特点使得NIR-AOTF特别适宜于在线的过程控制分析。

(1)粉末混合过程控制

El-Hagrasy等[7]用近红外光谱对水杨酸和乳糖粉末的混合均匀性进行在线监测。

验证分3个阶段。

第1阶段,收集样品的特征光谱,筛选出最有效的光谱区域,模拟混合过程并建立定标模型;

第2阶段,改变混合条件,利用前面建立的模型预测混合的均一性。

结果与传统HPLC检测对应点的分析值之间相关性良好,证明近红外光谱可以对不同混合条件下的样品进行均匀性鉴别;

第3阶段,将校正模型用于生产。

结果表明,在特定光谱区域内,NIR-AOTF作为一种对药物混合均匀性的“实时”的非侵入式分析方法是可行的、有效的。

不仅如此,混合物的颗粒大小也能得到很好的鉴别。

徐晓杰等[8]采用偏最小二乘法检测六味地黄丸生产粉末的混合均匀度,建立的方法基本可以满足药品生产过程中粉末混合均匀度测定的要求,并提出通过加大样本量以及扩大设计浓度范围。

NIR-AOTF可用于六味地黄丸粉末混合过程的质量控制,为中药生产现代化、粉末混合过程的实时在线质量控制提供了好方法。

(2)包衣过程监控

Petri等[9]发现,片剂样品近红外光谱的变化与包衣厚度相关。

他们进一步考察了NIR-AOTF在片剂包衣过程监控中的应用。

在用乙基纤维素(EC)或羟丙基纤维素(HPMC)进行包衣的过程中,按一定的时间间隔取样,测定片剂样品的近红外光谱。

采用二阶导数变换和多元散射校正2种方法处理光谱,然后用主成分分析建立计算包衣厚度的校正模型。

由于NIR-AOTF具有非破坏性,可以进一步测定样品的溶出度,考察包衣厚度与溶出度的相关性,从而更好地控制包衣制剂的质量。

为控制药物活性成分的释放,研究人员正在研究一种以包衣技术为核心的制剂新工艺,即在缓释药物片心外面包一层含有快速释放药物的包衣。

这需要对外层包衣中药物活性成分进行快速、非破坏性的定量分析,NIR-AOTF则可对这种高精度要求的包衣过程进行监控。

屈凌波等[10]比较NIR-AOTF与HPLC和卡费法对头孢片剂存在形式和生产中间体的测定,结果令人满意。

国外也有报道,将NIR-AOTF用于抗生素片剂的生产控制,以及NIR-AOTF结合化学计量学方法对抗菌素头孢呋肟酯片剂的生产进行全过程监测。

他们用对原始光谱数据的判别分析、对主成分分析、得分判别分析和聚类分析3种方法分别鉴别了头孢呋肟酯的原料药、颗粒、片心和片剂,结果较好;

并用多元线性回归和偏最小二乘法对此化合物的含量和含水量进行定量分析,也取得了满意的结果。

8.2.3在中药材生产过程中的应用

中药鉴别是保证中药质量的重要环节,传统的中药鉴别方法主要有性状鉴别、显微鉴别和理化鉴别等,但对一些亲缘关系较近的品种和伪品很难获得准确的鉴别结果。

目前将NIR-AOFT用于黄芪、当归、人参等药材地道性的鉴别研究,准确率达100%。

研究人员还建立了NIR-AOTF结合偏最小二乘法测定牛膝中蜕皮甾酮含量的方法,样品的预测值和真实值之间的相关系数为0.9489。

此法的建立为近红外漫反射光谱技术用于中药有效成分的定量分析提供了可能。

以红参提取液的浓缩过程为例,用标准正态变量法和一阶导数预处理光谱,建立近红外光谱与浓度参考值之间的校正模型。

此模型能实时测得红参醇提取液浓缩过程中浓缩液的乙醇和人参总皂苷的浓度,在线反映了浓缩过程的状态,为中药制药过程的质量控制提供了新方法。

觅译铜等[11]将NIR-AOTF与模糊神经网络相结合,以参麦注射液为例,研究了此分析方法用于快速检测与评价中药产品质量类别的效果。

近红外用于在线检测需要建立测量模型,建模需要标准样品和相关的一级数据。

模型的准确性受定标样品的选择、制备、操作技术和计算机化学计量软件的影响。

如遇生产工艺调整、产品质量和性能指标发生变化,近红外模型则需要维护,否则模型对样品的测试误差偏大控制可能出现失误。

此外,近红外仪器价格较贵,对于偶然做一两次分析或分散性样品的分析不太适用。

9近红外光谱技术在制药业中的应用

关于近红外光谱技术在制药行业中应用的文献报道很多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。

近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。

因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。

9.1原料和活性组分的测定

药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然后将原料进行分类。

该方法与传统的中红外光谱和湿化学方法相比,检测速度和效率大大提高。

药物中的活性组分是药物的核心部分,它是决定药效的主要成分,其质量和含量直接影响药物的治疗性能。

如果药剂中活性组分的含量过低,就不能达到应有的药效;

若活性组分含量太高,则可能带来副作用,甚至有害人体。

因此在药物加工过程中,活性组分的含量和质量必须严格控制。

近红外光谱结合漫反射技术可以快速、在线监测药物加工过程中活性组分的含量及其在赋形剂中分布的均匀性,适时调节其含量,得到合适的药剂。

此外近红外光谱还可以非破坏性检测成型片剂(包括涂层后的片剂)及胶囊中活性组分的含量及分布,以秒级的时间分析每个包装好的片剂。

固体药剂是很重要的一类药剂,大部分的口服药都是固体剂,如片剂、胶囊、颗粒及粉末等。

以前,人们对这些固体药剂的安全性和药效的关注,主要集中在药物的化学纯度上,后来人们逐渐认识到固体的物理性质如颗粒大小、湿度及结晶度等对药物的稳定性、溶解性及在人体内的吸收及生理获得性(Bioavailabiliti)都有很大的影响。

因此在药物的配方和加工过程中,固体药剂的物理表征就至关重要。

近红外光谱在固体药剂物理表征方面的应用是该技术在制药工业中最成功的应用。

由于近红外光在固体中的穿透程度较深以及其容易采用反射技术的特点,使他成功地用于固体药剂的各种物理化学性质如湿度、含量均一性、颗粒大小分布、结晶度及硬度的定量表征。

固体药剂一般是通过磨碎、混合、成粒、压片或装入胶囊及包装等过程制备的。

各种固体原料的颗粒大小及分布均会影响每一步加工过程及最终的产率,因此实时测定和控制每一步加工过程中固体原料的颗粒大小及分布对配方和加工过程都非常重要。

由于固体药剂中固体颗粒的大小及分布会影响其安全性、稳定性及药剂形式的可变性,药物中活性组分和赋形剂的颗粒大小会影响药物的各种特性,如多孔性和流动性,因此生产者和医药管理部门越来越重视固体药剂中固体颗粒大小的分布。

由于近红外光很容易被颗粒散射,使得近红外光谱结合漫反射技术可以快速、非破坏性测定固体药剂中各种成分包括活性组分、配剂及赋形剂的颗粒大小及分布等。

近红外光谱技术快速的特点使它可以在很短的时间内对同一批样品重复扫描多次,从而得到整批样品中颗粒大小得真实分布,且整个测定在几秒钟内即可完成。

药物在血液中的吸收取决于许多因素,其中一个很关键的因素就是药物存在的结晶形式。

大部分药物都可以形成集中结晶形式或多晶形。

当化学性质相同时,不同的结晶形式所处的能级不同,这种能级差将影响药物的溶剂化作用,亦即影响药物的溶解速度,从而使病人对药物的吸收速度也不相同。

最常用的晶形测定方法是热分析法(DSC),该方法的缺点时样品用量少,这就需要从极少量样品的分析结果得出得出整个样品的结构信息,误差较大;

另外,该方法需要毁坏样品,因而不能重复测定同一个样品。

中红外光谱在测定样品的结构信息方面非常有用,但由氢键效应引起的二级和三级结构信息只有在近红外区才能观察到。

另外,中红外技术所采用的各种样品处理方法如磨碎或溴化钾压片都会破坏样品的晶体结构,而且磨碎过程中加入的热能也会改变样品的结晶形式。

近红外光谱可以无需特出的样品制备过程,很容易区别固体药剂中各种结晶形式,同时测定其光学异构体的含量。

与多元线性回归方法相结合,近红外光谱是一种最佳的非破坏性质量控制手段,用于测定光活性物质的异构体纯度。

除以上应用外,近红外光谱在固体药剂的物理表征方面的应用还有湿度、混合均匀性、密度、粘度、硬度及片剂镀膜的分析测定等,由于其非破坏性的特点,用该方法分析完毕的样品可以继续进行其它分析测定或包装后再销售。

随着药物加工过程自动化程度的提高,药物的制备是通过混合、加工、成型及包装等一系列过程统一完成的,这就要求在每一步加工过程中都必须对所有组分进行全面表征。

因为任何疏失的操作都可能会带来很严重的后果。

传统的分析方法需要将样品取出到实验室进行分析,然后将信息反馈回生产车间控制加工过程。

由于分析速度慢且常常需要将加工过程停止下来,这就大大减慢了生产速度。

一些固体药剂生产车间是将一整批粉末混合物或颗粒压片或封入胶囊,然后随机抽出一些片剂或胶囊进行分析表征,如果此样品不合格,则整批产品即报废,这将会带来巨大的经济损失。

AOTF技术近红外光谱仪由于具有体积小,分析速度快及受温度、压力和振动等外界因素影响小的特点,使它可以安装在药物流水线上,直接非破坏性监测每一步加工过程中各个组分的含量和性质,及时发现问题,及时进行调整,避免了整批产品的损失。

近红外光谱仪可以在一秒钟中内甚至几分之一秒内完成一个片剂的扫描,因而它可以在很短时间内监测大量的药剂,从而保证整批产品的质量。

另外,近红外光谱仪还可以随时监测由加工过程可能出现的各种污染物。

由于快速、非破坏性的特点,使它几乎不影响药物的生产速度,同时还能进行全面的质量监控。

因此,从20世纪90年代开始,近红外光谱仪技术在制药工业中就变成一种强有力的分析手段。

除以上应用外,近红外光谱分析技术在中药材测试、鉴定和中西药品真、假的快速识别(打假)方面有独到之处,目前这方面的应用领域正在迅速扩展,AOTF技术近红外光谱仪已有便携(手持)式机型,为开展此领域的应用提供了强有力的武器。

10总结

本文只是简略概述了现代近红外光谱技术以及在制药业上的应用。

其实该项技术的应用几乎触及应用化学和物质分析的各个领域,其应用范围有日益扩展之趋势。

除在在制药、制糖、石油、食品、饮料、饲料等传统行业中的广泛应用外,近年来在环

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2