《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx

上传人:b****6 文档编号:8603720 上传时间:2023-05-12 格式:DOCX 页数:19 大小:47.66KB
下载 相关 举报
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第1页
第1页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第2页
第2页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第3页
第3页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第4页
第4页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第5页
第5页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第6页
第6页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第7页
第7页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第8页
第8页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第9页
第9页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第10页
第10页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第11页
第11页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第12页
第12页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第13页
第13页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第14页
第14页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第15页
第15页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第16页
第16页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第17页
第17页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第18页
第18页 / 共19页
《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx

《《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx(19页珍藏版)》请在冰点文库上搜索。

《点集拓扑讲义》第四章连通性学习笔记Word格式文档下载.docx

条件

(2)蕴涵(3).如果X的子集A和B满足条件

(2)中的要求,所以A、B为闭集,则由于这时有A=_和B=「,因此A、B也是开集,所以A和B也满足条件(3)中的要求.

条件(3)蕴涵(4).如果X的子集A和B满足条件(3)中的要求,所以AB是开集,则由和B二匸易见A和B都是X中的闭集,因此A、B是X中既开又闭的真(:

ABM0,AUB=X•••ABMX)子集,所以条件(4)成立.

条件(4)蕴涵(I).设X中有一个既开又闭的非空真子集A.令•则A和B都是X中的非空的闭子集,它们是无交的并且使得AUB=X易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(I)成立.

例4.1.1有理数集Q作为实数空间R的子空间是一个不连通空间.这是因为对于任何一个无理数r€R-Q,集合(-X,r)nQ=(-^,r]HQ是子空间Q中的一个既开又闭的非空真子集.

定理4.1.2实数空间R是一个连通空间.

证明我们用反证法来证明这个定理.

假设实数空间R是不连通空间.则根据定理4.1.1,在R中有两个非空闭集A和B使得AH和AUB=R成立.任意选取a€A和b€B,不失一般性

可设avb.令」=AH[a,b],和J=BH[a,b].于是」和J是R中的两个非空闭集分别包含a和b,并且使得」nJ=二和」UJ=[a,b]成立.集合」有上界b,故有上确界,设为=.由于」是一个闭集,所以匚€」,并且因此可见匚vb,因为]二b将导致b€」nF,而这与」nF=二矛盾.因此(1,b]—F.由于J疋一个闭集,所以「€一.这又导致]€」n一,也与」n一=二矛盾.

定义4.1.3设丫是拓扑空间X的一个子集.如果丫作为X的子空间是一个连通空间,则称丫是X的一个连通子集;

否则,称丫是X的一个不连通子集.

拓扑空间X的子集丫是否是连通的,按照定义只与子空间丫的拓扑有关(即丫的连通与否与X的连通与否没有关系.)•因此,如果/--—丄,则丫是X的连通子集当且仅当丫是Z的连通子集•这一点后面要经常用到.

定理4.1.3设丫是拓扑空间X的一个子集,A,B_Y.贝UA和B是子空间丫中的隔离子集当且仅当它们是拓扑空间X中的隔离子集.

因此,丫是X的一个不连通子集,当且仅当存在丫中的两个非空隔离子集

A和B使得AUB=Y(定义)当且仅当存在X中的两个非空隔离子集A和B使得AUB=Y.

证明用分别表示A在丫,X中的闭包.因为

(Pj(A)nfl)u(CY(S)n&

=((C£

(A)nK)n^)u(©

(B)nY)nA)

=(6⑷n(?

nfl))u©

(B)n(?

n血)=(Cx⑷冲)u(0(5)n&

因此根据隔离子集的定义可见定理成立.

定理4.1.4设丫是拓扑空间X中的一个连通子集.如果X中有隔离子集

A和B使得YCAUB贝U或者YCA,或者丫匚B.

证明如果A和B是X中的隔离子集使得丫CAUB则

((占cK)c£

eV)u((占c?

)c/eV)c(_AnYnB)u(Br\YnA)

F0((.4n5)u(^nl)=0

这说明AAY和BAY也是隔离子集.然而

(AAY)U(BAY)=(AUB)AY=Y

因此根据定理4.1.3,集合AAY和BAY中必有一个是空集.如果

AA丫二二,据上式立即可见Y—B,如果BA丫=二,同理可见Y—A.

定理4.1.5设丫是拓扑空间X的一个连通子集,Z_X满足条件

二二.则Z也是X的一个连通子集.

证明假设Z是X中的一个不连通子集•根据定理4.1.3,在X中有非空

隔离子集A和B使得Z=AUB,因此Y_AUB由于丫是连通的,根据定理4.1.4,

或者Y_A.丄二二’I匚」二口二二匸J

或者Y_B,同理,二一门.

这两种情形都与假设矛盾.

定理4.1.6设是拓扑空间X的连通子集构成的一个子集族.如果

"

匚贝U-■-是X的一个连通子集.

证明设A和B是X中的两个隔离子集,使得-■J-,=AUB.任意选取x€…汀:

「,不失一般性,设x€A.对于每一个丫€r,由于连通,根据定理4.1.4,或者二-」或者;

由于x€「AA,所以;

一一―.根据定理4.1.3,这就证明了「是连通的.

定理4.1.7设丫是拓扑空间X中的一个子集.如果对于任意x,y€Y存

YY

在X中的一个连通子集r使得x,y€:

-Y,则丫是X中的一个连通子集.

证明如果丫=二,显然丫是连通的.下设丫工二,任意选取a€Y,容易验证丫=七;

「I并且a€冷‘二.应用定理4.1.6,可见丫是连通的.

我们曾经说过,拓扑学的中心任务便是研究拓扑不变性质(参见§

2.2).所谓拓扑不变性质,乃是为一个拓扑空间具有必为任何一个与其同胚的拓扑空间所具有的性质.事实上,如果拓扑空间的某一个性质,它是藉助于开集或者藉助于经由开集定义的其他概念表达的,则此性质必然是拓扑不变性质.

拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个在连续映射下保持不变的性质.因为同胚是连续的满射,所以在连续映射下保持不变的性质必然是拓扑不变性质•

拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个可商性质.因为拓扑空间到它的商空间的自然的投射是一个连续的满射,所以在连续映射下保持不变的性质必然是可商性质.

以下定理4.1.8指出,连通性(即一个拓扑空间是连通的这一性质)是一个在连续映射下保持不变的性质•因此,它是拓扑不变性质,也是可商性质.

定理4.1.8设f:

X-Y是从连通空间X到拓扑空间Y的一个连续映射.则f(X)是Y的一个连通子集.

证明如果f(X)是丫的一个不连通子集,则存在丫的非空隔离子集A和B使得f(X)=AUB.于是「'

(A)和」(B)是X的非空子集,并且

(厂(&

n7^)

c旷Sn广1@))u屮(Q门厂(劝

三于"

((He牙)u(£

c7))=0

所以「'

(A)和「•(B)是X的非空隔离子集.此外,

1(A)U「(B)^1(AUB)=1(f(X))=X

这说明X不连通.与定理假设矛盾.

拓扑空间的某种性质P称为有限可积性质,如果任意n>

0个拓扑空间

X屁•益

都具有性质P,蕴涵着积空间心严XX

:

也具有性质p.

例如,容易直接证明,如果拓扑空间丄丄「-為都是离散空间(平庸空间),则积空间紅吟心X

•:

也是离散空间(平庸空间),因此我们可以说拓扑空间的离散性和平庸性都是有限可积性质.

根据定理3.2.9以及紧随其后的说明可见:

假设已知拓扑空间的某一个性质p是一个拓扑不变性质.为了证明性质p是一个有限可积性质,我们只要证明任何两个具有性质p的拓扑空间的积空间也是具有性质p的拓扑空间.

是连通空间.

证明根据前一段中的说明,我们只要对于n=2的情形加以证明.

首先我们指出:

如果'

■"

1‘1两个点有一个坐标相

同,则■'

〕二有一个连通子集同时包含x和y

不失一般性,设

定义映射k:

「‘一使得对于任何有一"

1<

.

由于

X吐是取常值;

的映射,

为恒同映射,

它们都是连续映射,其中-.Jlj分别是到第1和第2个坐标空间的

投射•因此,k是一个连续映射•根据定理4.1.8,k('

Q是连通的•此外易见,上(為)屮JX為,

因此它同时包含x和y.

现在来证明:

中任何两个点"

mybwJEXixx:

同时

属于二的某一个连通子集.这是因为这时若令-.■•_:

根据前段结论,可见有二■j的一个连通子集4同时包含x和z,也有二■-j的一个连通子集I同时包含y和z.由于z€,因此根据定理4.1.6,是连通的,它同时包含x和y.

于是应用定理4.1.7可见「•、是一个连通空间.

因为n维欧氏空间丁是n个实数空间R的笛卡儿积,而实数空间R又是一个连通空间,所以应用这个定理可见,n维欧氏空间J是一个连通空间.

作业:

P1163.5.6.8.14.

4.2连通性的某些简单应用

掌握实数空间R中的连通子集的“形状”

掌握实数空间R的子集中常见的连通子集与不连通子集

掌握常见的几种空间的同胚与否的事实

让我们回忆实数集合R中区间的精确定义:

R的子集E称为一个区间,如果它至少包含两个点,并且如果a,b€E,avb,则有

[a,b]={x€R|a<

x<

b}-E

读者熟知,实数集合R中的区间共有以下9类:

(-x,x),(a,x),[a,7,(-车a),(-^,a]

(a,b),(a,b],[a,b),[a,b]

因为,一方面以上9类集合中的每一个显然都是区间;

另一方面,如果E_R是一个区间,可视E有无上(下)界,以及在有上(下)界的情形下视其上

(下)确界是否属于E,而将E归入以上9类之一

在定理4.1.2中我们证明了实数空间R是一个连通空间•因为区间(a,%),(—X,&

)和(a,b)都同胚于R(请读者自己写出必要的同胚映射),所以这些区间也都是连通的;

血8)=血8),(-8,a)

C[a.b)c[a9bl(a^C@上]U[爲切c丽

根据定理4.1.5可见区间[a,^),(—^,a],[a,b),(a,b]和[a,b]都是连通的.

另一方面,假设E是R的一个子集,并且它包含着不少于两个点•如果E

不是一个区间,则‘?

-■■■■■--,也就是说,存在a<

c<

b,使得

m;

从而,若令

A=(—x,c)AE,B=(c,x)PE

则可见A和B都是E的非空开集,并且有AUB=E和AAB=J,因此E不连

通.

综合以上两个方面,我们已经证明了:

定理421设E是实数空间R的一个子集.E是包含着不少于两个点的一个连通子集当且仅当E是一个区间.

定理422设X是一个连通空间,f:

X-R是一个连续映射.则f(X)是R中的一个区间.

因此,如果x,y€X,则对于f(x)与f(y)之间的任何一个实数t(即当f(x)<

f(y)时,f(x)<

t<

f(y);

当f(y)<

f(x)时,f(y)<

f(x)),存在z€X使得f(z)=t.

证明这个定理的第一段是定理4.1.8和定理421的明显推论.以下证明第二段.设x,y€X.如果f(x)=f(y),则没有什么要证明的.现在设f(x)工f(y),并且不失一般性,设

f(x)vf(y).由于f(X)是一个区间,所以[f(x),f(y)]_f(X).因此对于任何t,f(x)<

f(y),有t€f(X),所以存在

z€X,使得f(z)=t.

根据定理4.2.2,立即可以推出数学分析中的介值定理和不动点定理.

定理4.2.3[介值定理]设f:

[a,b]-R是从闭区间[a,b]到实数空间

R的一个连续映射.则对于f(a)与f(b)之间的任何一个实数r,存在z€[a,b]使得f(z)=r.

定理4.2.4[不动点定理]设f:

[0,1]0,1]是一个连续映射.则存

在z€[0,1]使得f(z)=z

证明如同数学分析中的证法那样,只需构造F(x)=x-f(x),再利用介值定理即可证得.

容易证明欧氏平面卅中的单位圆周是连通的.这是因为如果定义映射

f:

R—f使得对于任意t€尺有f(t)=(cos2nt,sin2nt)€「,则易于验证f是一个连续映射,并且f(R)=〕•因此〕是连通空间R在一个连续映射下的象,所以它是连通的.

设点…八厂;

.1「称为点x的对径点•映射rf使

得任何x€「'

有r(x)=-x,称为对径映射•对径映射是一个连续映射,因为它是欧氏平面丁到自身的反射I:

口一在单位圆周上的限制•其中,映射I定义为对于任何"

产卞,有

I(x)=-x,容易验证(请读者自行验证)是一个连续映射.

定理4.2.5[Borsuk-Ulam定理]设f:

「—R是一个连续映射.则在二中存在一对对径点x和-x,使得f(x)=f(-x).

证明(略)

我们已经知道n维欧氏空间T是连通空间,下面进一步指出:

定理426n>

1维欧氏空间〔的子集丁-{0}是一个连通子集,其中0=(0,0,…,0)€7.

证明我们只证明n=2的情形.根据定理4.1.9,丁中的子集(-%,0)乂尺和(0,x)XR都是连通的.由于

c[0l®

)x5-{0}c[0®

)xR=(Op®

)xfi

所以根据定理4.1.5,Rn中的子集A=[0,^)XR-{0}是连通的;

同理,子集B=(-%,0]XR-{0}是连通的.由于AH以及

AUB=T-{0},因此根据定理4.1.6可见,「-{0}是连通的.

一般情形的证明类似,请读者自行补证.

定理426可以得到进一步的改善(参见习题第4题)

定理427欧氏平面】和实数空间R不同胚.

证明假设丁与R同胚,并且设f:

〔-R是一个同胚•因此对于连续映射

我们有J■'

•但根据定理426,?

-{0}是连通的,

而根据定理421,R-{f(0)}是不连通的•这与定理4.1.8矛盾.

定理427给出了利用拓扑不变性质判定两个空间不同胚的第一个实例.

定理424,定理425和定理427尽管简单但确有意思,特别是这几个定理都有高维“版本”,我们分别陈述如下:

定理4.2.8[Brouwer不动点定理]设f:

丄.-'

是一个连续映射,其中「是n维球体.则存在z€丄■使得f(z)=z.

定理4.2.9[Borsuk—Ulam定理]设f:

」一厂是一个连续映射,其中n》m则存在x€『使得f(x)=f(-x).

定理4210如果n^m则欧氏空间T和不同胚.这些定理的证明(除去我们已经证明过的情形)一般都需要代数拓扑知识,例如同调论或同伦论,请参阅有关的专门书籍.

作业:

P1214.

4.3连通分支

本节重点:

掌握连通分支的定义(即连通”类”的分法);

掌握连通分支的性质(定理431).

从前面两节中的内容可以看出,知道一个拓扑空间是否连通给我们处理-些问题带来很大的方便.这导致我们去考察一个我们并不知道是否连通的拓扑空间中的“最大”连通子集(即连通分支).

定义431设X是一个拓扑空间,x,y€X.如果X中有一个连通子集同时包含x和y,我们则称点x和y是连通的.(注意:

是点连通)

根据定义可见,如果x,y,z都是拓扑空间X中的点,贝U

(1)x和x连通(因为每一个单点集都是连通子集);

(2)如果x和y连通,则y和x也连通;

(显然)

(3)如果x和y连通,并且y和z连通,则x和z连通.(这是因为,这时存在X中的连通子集A和B使得x,y€A和y,z€B.从而由于y€APB可见AUB连通,并且x,z€AUB.因此x和z连通.)

以上结论归结为:

拓扑空间中点的连通关系是一个等价关系.

定义432设X是一个拓扑空间.对于X中的点的连通关系而言的每一个等价类称为拓扑空间X的一个连通分支.

如果丫是拓扑空间X的一个子集.丫作为X的子空间的每一个连通分支称为X的子集丫的一个连通分支.

拓扑空间XM二的每一个连通分支都不是空集;

X的不同的连通分支无交;

以及X的所有连通分支之并便是X本身•此外,x,y€X属于X的同一个连通分支当且仅当x和y连通.

拓扑空间X的子集A中的两个点x和y属于A的同一个连通分支当且仅当A有一个连通子集同时包含点x和y.

定理431设X是一个拓扑空间,C是拓扑空间X的一个连通分支.则

(1)如果Y是X的一个连通子集,并且YGCm乳【一f;

(2)C是一-个连通子集;

(3)C是一一个闭集.

本定理中的条件

(1)和

(2)说明,拓扑空间的每一个连通分支都是X的一个最大的连通子集.

证明

(1)任意选取x€YGC•对于任何y€Y由于x和y连通,故y€C•这证明Y_C.

Y

(2)对于任何x,y€C,根据定义可见,存在X的一个连通子集「匸使得x,y€r-.显然「匸GCm二,故根据

(1),匚—C.应用定理4.1.7可知,C是连通的.

(3)因为C连通,根据定理4.1.5,「连通.显然,一I一■'

.所

以根据

(1),•「二=.从而c是一个闭集.

但是,一般说来连通分支可以不是开集.例如考虑有理数集Q(作为实数空间R的子空间).设x,y€QxMy.不失一般性,设xvy.如果Q的一个子集E同时包含x和y,令A=(-X,r)GE和B=(r,)GE,其中r是任何一个无理数,xvrvy.此时易见A和B都是Q的非空开集,并且E=AUB.因此E不连通.以上论述说明E中任何一个包含着多于两个点的集合都是不连通的,也就是说,Q的连通分支都是单点集•然而易见Q中的每一个单点集都不是开集.

记住这个事实:

任一个集合A都可以由含于它内部的所有连通分支的并而成(且这些连通分支互不相交).即使是离散空间,它的每一个点自成连通分支这个结论也成立.

P1231.3.4.8.

4.4局部连通空间

掌握局部连通的定义与性质(定理441-443);

掌握连通与局部连通的关系引进新的概念之前,我们先来考察一个例子.

例4.4.1在欧氏平面丄中令S={(x,sin(1/x))|x€(0,1]}.

T={0}X[-1,1],其中S被称作拓扑学家的正弦曲线,它是区间(0,1]在一个连续映射下的象,因此是连通的.此外,也容易验证

JSUT,因此SUT也是连通的.尽管如此,倘若我们查看〕中的点,

容易发现它们明显地分为两类:

S中的每一个点的任何一个“较小的”邻域中都包含着一个连通的邻域,而T中的每一个点的任何一个邻域都是不连通的.我们用以下的术语将这两个类型的点区别开来.

定义441设X是一个拓扑空间,x€X.如果x的每一个邻域U中都包含着x的某一个连通的邻域V,则称拓扑空间X在点x处是局部连通的.

如果拓扑空间X在它的每一个点处都是局部连通的,则称X是一个局部连通空间.

回到例441中所定义的拓扑空间1.容易证明,[在其属于S的每一个点处是局部连通的,而在其属于T的每一个点处都不是局部连通的.也因此,尽管〔是一个连通空间,但它却不是一个局部连通的空间.

局部连通的拓扑空间也不必是连通的.例如,每一个离散空间都是局部连通空间,但包含着多于两个点的离散空间却不是连通空间.又例如,n维欧氏

空间丁的任何一个开子空间都是局部连通的(这是因为每一个球形邻域都同胚于整个欧氏空间厂,因而是连通的),特别,欧氏空间J本身是局部连通的.另一方面,欧氏空间丁中由两个无交的非空开集的并作为子空间就一定不是连通的(请读者自己证明).

此外根据定义立即可见:

拓扑空间X在点x€X处是局部连通的当且仅当x的所有连通邻域构成点x处的一个邻域基,

定理4.4.1设X是一个拓扑空间.则以下条件等价:

(1)X是一个局部连通空间;

(2)X的任何一个开集的任何一个连通分支都是开集;

(3)X有一个基,它的每一个元素都是连通的.

证明

(1)蕴涵

(2).设C是X的一个连通分支,「---「.如果x€C,由于U是x的一个邻域,所以当

(1)成立时x有一个连通邻域V包含于U•又由于VGC包含着点x,所以不是空集,根据定理4.3.1可见-/.因此C€二.这证明C是属于它的任何一个点x的邻域,因此C是一个开集.

条件

(2)蕴涵(3).若

(2)成立,则X的所有开集的所有连通分支(它们都是开集)构成的集族,由于每一个集合是它的所有连通分支之并,恰是X

的一个基.

条件(3)蕴涵⑴.显然.

我们常用到定理441的一个推论:

局部连通空间的每一个连通分支都是开集.

定理442设X和Y都是拓扑空间,其中X是局部连通的.又设f:

X-Y是一个连续开映射.则f(X)是一个局部连通空间.

证明根据定理4.4.1,可设B是X的一个基,其中的每一个元素都是连通的.对于每一个B€B,集合f(B)是连通的,并且由于f是一个开映射,f(B)是丫中的一个开集,因此也是f(X)的一个开集.这证明集族B1={f(B)|B€B}}是一个由f(X)的连通开集构成的族.我们指出B1是f(X)的一个基,这是因为,如果U是f(X)中的一个开

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2