湿法烟气脱硫论文解析.docx

上传人:b****5 文档编号:8783503 上传时间:2023-05-14 格式:DOCX 页数:28 大小:265.89KB
下载 相关 举报
湿法烟气脱硫论文解析.docx_第1页
第1页 / 共28页
湿法烟气脱硫论文解析.docx_第2页
第2页 / 共28页
湿法烟气脱硫论文解析.docx_第3页
第3页 / 共28页
湿法烟气脱硫论文解析.docx_第4页
第4页 / 共28页
湿法烟气脱硫论文解析.docx_第5页
第5页 / 共28页
湿法烟气脱硫论文解析.docx_第6页
第6页 / 共28页
湿法烟气脱硫论文解析.docx_第7页
第7页 / 共28页
湿法烟气脱硫论文解析.docx_第8页
第8页 / 共28页
湿法烟气脱硫论文解析.docx_第9页
第9页 / 共28页
湿法烟气脱硫论文解析.docx_第10页
第10页 / 共28页
湿法烟气脱硫论文解析.docx_第11页
第11页 / 共28页
湿法烟气脱硫论文解析.docx_第12页
第12页 / 共28页
湿法烟气脱硫论文解析.docx_第13页
第13页 / 共28页
湿法烟气脱硫论文解析.docx_第14页
第14页 / 共28页
湿法烟气脱硫论文解析.docx_第15页
第15页 / 共28页
湿法烟气脱硫论文解析.docx_第16页
第16页 / 共28页
湿法烟气脱硫论文解析.docx_第17页
第17页 / 共28页
湿法烟气脱硫论文解析.docx_第18页
第18页 / 共28页
湿法烟气脱硫论文解析.docx_第19页
第19页 / 共28页
湿法烟气脱硫论文解析.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

湿法烟气脱硫论文解析.docx

《湿法烟气脱硫论文解析.docx》由会员分享,可在线阅读,更多相关《湿法烟气脱硫论文解析.docx(28页珍藏版)》请在冰点文库上搜索。

湿法烟气脱硫论文解析.docx

湿法烟气脱硫论文解析

石灰石—石膏湿法低浓度二氧化硫烟气脱硫工艺研

摘要:

本文主要讲述了工业石灰石—石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。

关键词:

石灰石湿法二氧化硫烟气脱硫

一|本课题研究的意义与目的

环境问题是关系到经济可持续发展的大问题,保持人类耐以生存的自然和生态环境已经引起世界各国的广泛关注。

我国是一个燃煤大国,大量含硫煤炭的燃烧导致很多地区的大气中含有相当浓度的SO2。

二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。

削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。

1988年世界卫生组织和联合国环境规划署公布的调查报告中指出:

根据15年来60多个国家监测获得的统计资料显示,由人类制造排放的SO2每年达180Mt,比烟尘等悬浮粒子100Mt还多,已成为大气环境的第一大污染物。

SO2和酸雨污染的主要来源是金属冶炼工业(包括铁及有色金属铜、锌和铅等)和能源工业(包括煤、石油和天然气),尤其是燃煤火力发电厂和工业锅炉。

在我国,燃煤SO2排放量占总SO2排放量的85%以上。

我国是世界上唯一以煤为主要能源的国家,煤在一次能源中占75%,约相当于年耗煤1Gt,其中84%以上是通过燃烧方法利用的,煤燃烧产生的SO2的废气,成为大气污染最主要的根源。

因此,我国城市的污染主要为煤烟型污染。

根据环境保护部门测定,1995年全国煤炭消耗量1.28Gt,SO2排放量达23.7Mt,超过美国目前的21Mt,成为世界SO2排放的第一大国。

1998年,由于电力行业增长减缓,国家环境监测总站公布的SO2排放量降为20.91Mt,酸雨造成的各项损失超过1100亿元,相当于1tSO2的污染损失超过5000亿元。

二、本课题研究的内容

本文主要讲述了工业石灰石—石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。

①工艺路线(基本原理):

CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2

CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)2

2CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2O

Ca(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2

②工艺流程方框图如下:

 

③工艺系统:

主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。

④影响因素:

主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。

⑤脱硫石膏的运用与发展:

主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。

第一章文献综述

1.1前言

二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。

削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。

目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。

但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。

氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。

钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。

钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。

上述工艺普遍存在以下几个共同的问题:

①脱硫设备的工程投资较大。

②脱硫过程中的副产物难利用。

③高额的环保运行费用使生产企业不堪重负。

针对传统脱硫方法存在的缺陷,本文阐述了主要钙法在处理低浓度二氧化硫烟气领域的新工艺、新技术,这些新工艺的一个基本出发点是既解决了烟气排放问题,又综合回收了资源,达到以废治废的目的,获得了良好的社会效益和经济效益。

1.2二氧化硫(Sulfurdioxide)简述

1.2.1二氧化硫物化性质

二氧化硫在常温下是无色气体,具有强烈的刺激性气味,化学式:

SO2,分子量:

64.06。

二氧化硫的主要物理性质如下:

冷凝温度,℃-10.02

结晶温度,℃-75.48

标准状况下的气体密度,g/L2.9265

标准状况下摩尔体积,L/mol21.891

气体的平均比热容(0-100℃),J/(g·K)0.6615

液面上的蒸气压(20℃),kPa330.26

蒸发潜热(20℃),J/g362.54

在20℃的温度下,1体积的水可溶解40体积的二氧化硫气体并放出34.4kJ/mol的热量。

随着温度的升高,二氧化硫气体在水中的溶解度降低。

在硫酸溶液中,随着硫酸浓度的提高,二氧化硫的溶解度降低。

二氧化硫气体容易液化。

为了使二氧化硫气体充分液化,可将干燥的SO2压缩到0.405MPa,并进行冷却。

也可以使用在常压下进行低温冷冻的办法使二氧化硫气体液化。

液体二氧化硫对于许多无机化合物和有机化合物都具有良好的溶解能力。

二氧化硫在化学反应中既可作氧化剂,也可以作还原剂。

在催化剂存在下二氧化硫与氧反应,生成三氧化硫,此反应是接触法生产硫酸的基础[7]。

二氧化硫具有酸性氧化物的通性,很容易发生以下反应[8-9]:

SO2+H2O=H2SO3

SO2+CaO=CaSO3

SO2+NaOH=NaHSO3

SO2+2NaOH=Na2SO3

SO2+Ca(OH)2=CaSO3↓+H2O

SO2+H2O+NH3=NH4HSO3

SO2+H2O+2NH3=(NH4)2SO3

上述反应是传统氨法、钠法及钙法二氧化硫烟气处理工艺的理论基础。

1.2.2二氧化硫来源及带来的危害

二氧化硫是当今人类面临的主要大气污染物之一,其污染源分为两大类:

天然污染源和人为污染源。

这两类污染源的特点如表1-1所示。

天然污染源由于量少、面广、易稀释和净化,对环境的危害不大;而人为污染源由于量大、集中、浓度高,对环境造成严重的危害。

表1-1二氧化硫天然污染源和人为污染源特点比较

发生源

特性及影响

排放比例

1)海洋硫酸盐盐雾;

2)缺少氧化的水和土壤释放的硫酸盐;

3)细菌分散的有机化合物;

4)火山爆发;

5)森林失火等

1)全球性分布,在)一阔地区以低浓度排放,在大气中易于稀释和被净化;

2)一般不会产生酸雨现象;

3)人力无法控制

1/3

1)矿物燃料燃烧,占3/4以上;

2)金属冶炼;

3)石油生产;

4)化上生产;

5)采矿等

l)比较集中,在占地球表面不到1%的城市和_L业区上空占主导地位;

2)是发生酸雨的基本原因;

3)人力可以控制

2/3

二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及材料等方面都造成了一定程度的危害。

空气中不同浓度的二氧化硫对人体的影响列于表1-2中。

它对人体健康的影响主要是通过呼吸道系统进入人体,与呼吸器官作用,引起或加重呼吸器官的疾病,如鼻炎、咽喉炎、支气管哮喘、肺气肿、肺癌等。

二氧化硫往往被飘尘吸附,二氧化硫和飘尘的协同效应使其对人体的危害更大。

吸附二氧化硫的飘尘可将二氧化硫带入人体的肺部,使其毒性增加3-4倍。

在光照下,飘尘中的Fe2O3等物质可将二氧化硫转化为三氧化硫,遇水可形成硫酸雾并被飘尘吸附。

此飘尘经呼吸道进入肺部,滞留在肺壁上,可引起肺纤维性病变和肺气肿,硫酸雾的刺激作用比二氧化硫强10倍。

二氧化硫给人类带来最严重的问题是酸雨,这是全球性的问题。

大气中二氧化硫、NOX与氧化性物质O3、H3O3和其他自由基进行化学反应生成硫酸和硝酸,最终形成PH值小于5.6的酸性降雨(即酸雨)返回地面,它们约占酸雨总量的90%以上。

表1-2空气中不同体积分数的二氧化硫对人体的影响

体积分数(×10-6)

对人体的影响

体积分数(×10-6)

对人体的影响

0.01-0.1

由于光化学反应成分散性颗粒,引

起视野距离缩小

10.0-100.0

对动物进行试验时出现种种症状

0.1-1.0

植物及建筑结构材料遭受损害

20.0

人因受到刺激而引起咳嗽、流泪

1.0-5.0

感受到二氧化硫

气体

100.0

人仅能忍受短时间的操作,咽喉有

异常感,喷嚏、疼

痛、哑嗓、咳嗽、

胸痛,并且呼吸困难

5.0-10.0

人在此环境下进行较长时间的操作尚能承受

400-500

立刻引起人严重中毒,呼吸道闭塞而窒息死亡

1.2.3相关标准

由于二氧化硫是一种有毒有害气体,也是大气主要污染源之一,因此国家严格规定了生产企业二氧化硫废气排放限值,并制定了相关标准。

表1-3为1997年1月1日前设立的污染源应当执行的标准,表1-2为1997年1月1日后设立的污染源应当执行的标准。

表1-3现有污染源大气污染物(二氧化硫)排放限值

污染物

最高允许排放浓度/(mg·m-3)

最高允许排放速率(kg·h-1)

无组织排放监控浓度限值

排气筒高度/m

二级

三级

监控点

浓度/(mg·m-3)

960(硫、二氧化硫、硫酸和其他含硫化合物的生产)

15

20

30

40

50

60

70

80

90

100

2.6

4.3

15

25

39

55

77

110

130

170

3.5

6.6

22

38

58

83

120

160

200

270

周界外浓

度最高点

0.40(监控点与参照点浓度差值)

550(硫、二氧化硫、硫酸和其他含硫化合物的生产)

另外,国家还专门针对工业炉窑制定了二氧化硫气体排放标准,见表1-4。

表1-4国家标准GB9078-1996

有害污染物名称

标准级别

1997年月1日前安装的工业炉窑

1997年月1日起安新、改、扩建的工业炉窑

排放浓度

mg/m3

排放浓度

mg/m3

有色金属冶炼

850

禁排

1430

850

4300

1430

钢铁烧结冶炼

1430

禁排

2860

2000

4300

2860

燃煤/油锅炉

1200

禁排

1430

850

1800

1200

1.3石灰石简述

1.3.1石灰石物化性质

石灰石:

白色粉末,无臭、无味,分子式:

CaCO3(Calciumcarbonate),分子量:

100.09密度:

2.93g∕cm3,熔点:

825°C,俗名:

石灰石、方解石、大理石、白垩、霰石、汉白玉,溶解性:

几乎不溶于水,在含有铵盐或三氧化二铁的水中溶解,不溶于醇。

露置空气中无反应,不溶于醇,遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。

高温条件下分解为氧化钙和二氧化碳。

表1-5附表石灰石的一般工业要求(%)

项目

水泥

冶金溶剂

化学工业

原料

Ⅰ级

Ⅱ级

Ⅲ级

铝氧级

磷肥

氮肥

电石

制碱

制糖

CaO

MgO

K2O+Na2O

SO3

fSiO2

SiO+Al2O3

P2O5

R2O3

P

S

CaCO3

MgCO3

CaSO4

Al2O3+Fe2O3

Fe2O3

≥48

≤3.0

≤0.6

≤1

≤4

 

≥52

≤3.5

≤0.25

≤2.0

≤0.02

 

≥50

≤3.5

≤0.25

≤3.0

≤0.04

 

≥49

≤3.5

≤0.25

≤3.5

≤0.06

 

≥50

≤1.5

 

≤2.0

 

≥53

 

≤3

 

≤1

≤0.8

 

≤0.01

≤0.15

≥97

 

≥54

 

≤1

 

≤1

≤0.06

≤0.1

 

 

≤1

 

≥92

≤2-3

≤3-4

≤0.25

 

≤2.5

 

≥95

≤1.8

≤0.2

≤1.5

1.3.1石灰石的来源及用途

石灰石是用途极广的宝贵资源,以其在自然界中分布广、易于获取的特点而被广泛应用。

在现代工业中,石灰石是制造水泥、石灰、电石的主要原料。

优质石灰石经超细粉磨后,被广泛应用于造纸、橡胶、油漆、涂料、医药、化妆品、饲料、密封、粘结、抛光等产品的制造中。

其中,熔剂用灰岩是冶金工业中不可缺少的,可用于炼铁用石灰石作熔剂,除去脉石;炼钢用生石灰做造渣材料,除去硫、磷等有害杂质,辉石是做陶瓷的原料。

  硅灰石有较高的白度、良好的介电性能和较高的耐热性能,广泛地应用于陶瓷、化工、冶金、建筑、机械、电子、造纸、汽车、农业等。

如硅灰石可用于高质量油漆、涂料的填充料,优质的超细硅灰石粉可替代价格昂贵的钛白粉用于颜料工业。

石灰与烧碱制成的碱石灰,用作二氧化碳的吸收剂。

生石灰用作干燥剂和消毒剂。

农业上,用生石灰配制石灰硫黄合剂、波尔多液等农药。

土壤中施用熟石灰可中和土壤的酸性、改善土壤的结构、供给植物所需的钙素。

用石灰浆刷树干,可保护树木。

 

  随着科学技术的不断进步和纳米技术的发展,石灰石的应用领域还将进一步拓宽。

1.4石膏简述

1.4.1石膏物化性质

石膏是应用广泛的一种非金属矿物。

它的主要成份是硫酸钙,按其中含结晶水的多少又分为石膏和无水石膏两种。

石膏又称二水石膏,也有称之为软石膏、水石膏的,它是含有两份结晶水的硫酸钙(CaSO3·2H20)也常含有各种杂质和游离水。

1.4.2石膏的来源及用途

来源:

除天然石膏外,还存在有化工废渣石膏,是化工厂的废弃物,常见的有磷石膏、盐石膏、氟石膏、乳石膏、黄石膏、苏打石膏等。

用途:

建筑石膏:

多用于建筑模灰,粉刷,砌筑砂浆及各种石膏制品。

模型石膏:

杂质少,色白,主要用于陶瓷的制培工艺,少量用于装饰浮雕。

高强度石膏:

主要用于要求较高的模灰工程,装饰制品和石膏板。

另外掺入放水剂还可以制成高强度放水石膏;加入有机材料如聚乙烯醇水溶液、聚醋酸乙烯乳液等,也可配成无收缩的粘结剂。

粉刷石膏:

配以适量的缓凝剂,保水剂等化学外加剂而制成的摸灰用胶结材料。

石膏品种虽多,但在建筑方面应用最多的是建筑石膏。

纸面石膏板的主要用途以半水石膏和面纸为主要原料,掺加适量纤维,胶粘剂、促凝剂、经料浆配制、成型、切割、烘干而成的轻质薄板。

具有高强、隔声、防火、收缩率小、加工性能良好等特点。

纸面石膏板可用于居室内隔墙、墙体覆面板,既是罩面层,又是装饰层。

因不耐水,故不宜用于厨房和浴厕。

其容重为800~950公斤/立方米。

其抗弯强度、抗拉强度、隔热性、隔音性、导热性、粘结性均应符合国家标准。

一般规格为2400毫米×900毫米×9毫米、3000毫米×1200毫米×12毫米、4000毫米×1200毫米×15毫米。

1.4.3石膏制硫酸说明

随着高浓度磷肥的发展,利用石膏,尤其是磷石膏制取硫酸已引入人们的重视。

与用硫铁矿制硫酸比较,用石膏制取硫酸在综合建设投资和生产成本方面都有优越性,目前已建有多套装置,其中最大规模已达22KT,并掌握了盐石膏、磷石膏和天然石膏生产硫酸,并联产水泥的技术。

在焦碳的还原作用下,硫酸钙于900~1200℃下分解反应分两步进行:

CaSO4+2C=CaS+2CO2

3CaSO4+CaS=4CaO+4SO2

总反应为:

2CaSO4+C=4CaO+CO2

生成的CaO再与配料中的SIO2、ALO3、FEO3等形成水泥熟料。

水泥熟料与一定数量的混合材、缓凝剂等配合,经过研磨制成水泥。

石膏还原产生的二氧化硫气体,送入接触法硫酸生产装置制成硫酸。

第二章常用烟气脱硫技术介绍

2.1湿法烟气脱硫技术

2.1.1氨法

氨法是采用氨水洗涤含SO2的废气,形成(NH4)2SO3-NH4HSO3-H2O的吸收液体系,该溶液中(NH4)2SO3对SO2具有良好的吸收能力,是氨法中的主要吸收剂,吸收SO2以后的吸收液可用不同的方法处理,获得不同的产品。

氨法中较成熟的有氨-酸法、氨-亚硫酸铵法和氨-硫酸铵法等。

在这些脱硫方法中,其吸收的原理和过程是相同的,不同之处仅在于对吸收液处理的方法和工艺技术路线不同。

下面以氨-酸法为例进行说明。

氨-酸法的基本原理是将氨水加入吸收塔中使其与含SO2的废气逆流接触,生成亚硫酸铵和亚硫酸氢铵。

当吸收液中的亚硫酸铵与亚硫酸氢铵的比例达到0.8~0.9时,可将吸收液自循环吸收系统部分导出,采用硫酸酸解得到SO2气体和硫酸铵溶液。

SO2可用于制造和生产硫酸以及作为化工原料,回收SO2后的吸收液中含有硫酸铵和过量的硫酸,可用氨中和其中的硫酸生成硫酸铵,将硫酸铵溶液进行蒸发浓缩可得到硫酸铵晶体。

其化学反应方程式如下[7]:

吸收:

2NH3·H2O+SO2=(NH4)2SO3+H2O

(NH4)2SO3+H2O+SO2=2NH4HSO3

酸解:

(NH4)2SO3+H2SO4=(NH4)2SO4+SO2+H2O

2NH4HSO3+H2SO4=(NH4)2SO4+2SO2+H2O

中和:

H2SO4+2NH3=(NH4)2SO4

氨法是烟气脱硫方法中较为成熟的方法,该法脱硫费用低,氨可留在产品内,以氮肥的形式存在,产品实用价值较高。

但氨易挥发,因而吸收剂的消耗量较大,另外氨的来源受地域及生产企业的限制较大。

尽管如此,氨法仍不失为一种治理低浓度二氧化硫的有前途的方法。

2.1.2氧化镁法

氧化镁法在美国的烟气脱硫系统中也是较常用的一种方法,目前美国已有多套Mgo装置在电厂运转。

其简单工艺流程如图2一2所示:

图2-2氧化镁法烟气脱硫工艺流程

 

烟气经过预处理后进入吸收塔,在塔内S02与吸收液Mg(0H)2和MgS03

反应:

Mg(OH)2+SO2=MgSO3+H2O

MgSO3+SO2+H2O=Mg(HSO3)

其中Mg(HSO3)2还可以与Mg(OH)2反应:

Mg(HSO3)2+Mg(OH)2=2MgSO3+2H2O

在生产中常有少量MgSO3被氧化成MgSO4,MgSO3与MgSO4沉降下来时都呈水合结晶态,它们的晶体大而且容易分离,分离后再送入干燥器制取干燥的MgSO3/MgSO4,以便输送到再生工段,在再生工段,MgSO3在缎烧中经1500oF高温分解,MgSO4则以碳为还原剂进行反应:

MgSO3=MgO+SO2

2MgSO4+C=MgO+SO2+CO2

从锻烧炉出来的S02气体经除尘后送往制硫或制酸,再生的MgO与新增加的MgO一道,经加水熟化成氢氧化镁,循环送去吸收塔。

MgO法比较复杂,费用也比较高,但它却是有生命力的。

这主要是由于该法脱硫率较高(一般在90%以上),且无论是MgSO3还是MgSO4都有很大的溶解度,因此也就不存在如石灰/石灰石系统常见的结垢问题,终产物采用再生手段既节约了吸收剂又省去了废物处理的麻烦,因此这种方法在美国还是颇受青睐的。

第三章石灰石—石膏湿法烟气脱硫工艺

石灰石—石膏湿法烟气脱硫,是采用石灰石浆液吸收烟气中SO2,脱硫产物为二水石膏(CaSO4·2H2O),此法以日本应用最多。

石膏的主要用途是作为建筑材料,高质量石膏作为石膏板材的原料。

一个值得注意的脱硫石膏应用途径可以参考磷肥工业中的石膏制硫酸过程。

在该过程中,石膏被C(无烟煤或焦碳)还原为SO2和CaO。

SO2(以5%左右浓度的空气混合物形式存在)可进一步被氧化转化为硫酸。

CaO则循环到脱硫装置作为脱硫剂循环使用。

因此,理论上,这个过程回收了烟气中的SO2生产工业浓度硫酸98%(质量),不消耗脱硫剂。

而其还原剂煤在电厂也是十分丰富和方便的。

这个过程对高硫煤电厂具有一定价值。

3.1石灰石—石膏湿法烟气脱硫工艺原理

该法是将石灰石粉磨成小于250目的细粉,配成料浆作SO2吸收剂。

在吸收塔中,烟气与石灰石浆并流而下,烟气中的SO2与石灰石发生化学反应生成亚硫酸钙和硫酸钙,在吸收塔低槽内鼓入大量空气,使亚硫酸钙氧化成硫酸钙,结晶分离得副产品石膏。

因此过程主要分为吸收和氧化两个步骤:

(1)SO2的吸收石灰石料降在吸收塔内生成石膏降,主要反应如下:

CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2

CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)2

(2)亚硫酸钙氧化由于烟气中含有O2,因此在吸收过程中会有氧化副反应发生。

在氧化过程中,主要是将吸收过程中所生成的CaSO3·1/2H2O氧化生成CaSO4·2H2O。

2CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2O

由于在吸收过程中生成了部分Ca(HSO3)2,在氧化过程中,亚硫酸氢钙也被氧化,分解出少量的SO2:

Ca(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2

亚硫酸钙氧化时,其离子反应可表达为:

CaSO3·1/2H2O+H+Ca2++HSO3—+1/2H2O

HSO3—+1/2O2SO42—+H+

Ca2++SO42—+2H2OCaSO4·2H2O

由以上反应可见,氧化反应必须有H+存在,浆液的PH值在6以上时,反应就不能进行。

在吸收SO2过程中,一般石灰的PH值为5~6,石灰石的PH值为6~7,吸收剂的粒度越细越好。

3.2石灰石—石膏法烟气脱硫工艺流程

石灰石破碎后经湿式球磨机加工成石灰石浆液,经旋流器入石灰石浆液箱,配好的浆液用泵送入吸收塔顶部,从吸收塔顶部的喷嘴(共三层树状喷嘴)喷出,与从塔中进入的含SO2烟气逆向流动。

经洗涤净化后的烟气从塔顶进入烟囱排放。

石灰石浆液吸收SO2后,成为含亚硫酸钙和亚硫酸氢钙的混合液,在吸收塔底部被进入吸收塔底部的空气氧化成石膏,石膏浆经过滤入石膏仓,在制板车间压制成石膏板,工艺流程见下图。

 

 

3.3工艺系统

脱硫工艺系统主要由吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、浆液排放与回收系统、压缩空气系统等组成。

3.3.1吸收剂制备系统

石灰石由自卸汽车运至电厂脱硫岛内并卸入地下料斗,经给料机、斗式提升机送至石灰石仓内,再由称重给料机送到湿式球磨机内磨制成浆液,石灰石浆液用泵输送到水力旋流器,经分离后,大尺寸物料再循环至磨机,符合要求的物料(≤0.063mm,90%通过)溢流至石灰石浆液箱中。

石灰石浆液箱的石灰石浆液(浓度约30%)采用石灰石浆液泵送入脱硫吸收塔内;塔内石灰石浆液的添加量根据FGD进、出口烟气中的SO2浓度以及吸收塔浆池中的PH值进行调节。

石灰石仓的有效容积按两台锅炉在BMCR工况下、燃用设计煤种时3天所需的吸收剂耗量设计。

石灰石浆液制备系统设置两台湿式球磨机和配套的石灰石浆液旋流站,每台磨机出力不小于两台锅炉BMCR工况下、燃用设计煤种时所需吸收剂总耗量的75%。

设一座公用的石灰石浆液箱,其有效容积能满足两台锅炉在额定工况下燃用设计煤种时脱硫装置

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2