市政交通隧道工程.docx

上传人:b****5 文档编号:8805895 上传时间:2023-05-15 格式:DOCX 页数:36 大小:1.25MB
下载 相关 举报
市政交通隧道工程.docx_第1页
第1页 / 共36页
市政交通隧道工程.docx_第2页
第2页 / 共36页
市政交通隧道工程.docx_第3页
第3页 / 共36页
市政交通隧道工程.docx_第4页
第4页 / 共36页
市政交通隧道工程.docx_第5页
第5页 / 共36页
市政交通隧道工程.docx_第6页
第6页 / 共36页
市政交通隧道工程.docx_第7页
第7页 / 共36页
市政交通隧道工程.docx_第8页
第8页 / 共36页
市政交通隧道工程.docx_第9页
第9页 / 共36页
市政交通隧道工程.docx_第10页
第10页 / 共36页
市政交通隧道工程.docx_第11页
第11页 / 共36页
市政交通隧道工程.docx_第12页
第12页 / 共36页
市政交通隧道工程.docx_第13页
第13页 / 共36页
市政交通隧道工程.docx_第14页
第14页 / 共36页
市政交通隧道工程.docx_第15页
第15页 / 共36页
市政交通隧道工程.docx_第16页
第16页 / 共36页
市政交通隧道工程.docx_第17页
第17页 / 共36页
市政交通隧道工程.docx_第18页
第18页 / 共36页
市政交通隧道工程.docx_第19页
第19页 / 共36页
市政交通隧道工程.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

市政交通隧道工程.docx

《市政交通隧道工程.docx》由会员分享,可在线阅读,更多相关《市政交通隧道工程.docx(36页珍藏版)》请在冰点文库上搜索。

市政交通隧道工程.docx

市政交通隧道工程

市政交通-隧道工程

随着经济建设和城市化发展,交通已经成为当今城市最为严重的问题之一。

城市居民生活水平的提高,对环境也提出了越来越高的要求。

构建立体交通、倡导公共交通,对缓解城市交通拥堵、改善道路交通环境具有重要意义。

  构建立体交通之一就是发展城市地下道路。

当前我国一些主要城市都在发展城市地下道路隧道。

如北京奥运公园地下道路隧道;上海延安东路越江隧道、上海军工路隧道、打浦路隧道、外环隧道;南京玄武湖隧道、武汉长江隧道、杭州西湖隧道;扬州瘦西湖隧道;青岛胶州湾海底隧道;厦门翔安海底隧道等。

  本章隧道工程是指城市地下道路隧道。

1 建设条件

城市地下道路与地面道路有比较大的差异,表现在道路环境、驾驶行为、设施配置、运营与防灾、道路特征与交通组织以及建设特征等方面。

城市地下空间的发展,逐步出现了一些新型的地下车行服务设施。

传统意义上的单点进出隧道向着多点进出、系统性的长距离地下车行设施发展。

这些新型的地下车行设施与传统的单点进出隧道相比,在交通定位、使用功能、通风、防灾、应急救援等方面都存在显著差异。

地下道路与地面道路的差异对比见表5.1-1。

城市地下道路典型断面见图5.1-1。

表5.1-1城市地下道路与地面道路的差异对比

差异

地面道路

地下道路

道路环境

外部环境

受外界雨、雪等影响

几乎不受外界影响

光环境

自然光

需要辅助照明

空气环境

与外界空气一样

污染积聚,中等以上长度隧道需设辅助通风系统

温度湿度环境

随外界变化

相对稳定

声环境

自然声、噪声不大

噪声大

驾驶行为与车辆特征

驾驶人行为

正常

保守、心理影响、容易疲劳

车辆运行特征

除快速路外,一般道路受两侧干扰较大

连续流、干扰少、容易超速

设施配置

标志标线、护栏等常规交通设施、相对简单

除正常的交通设置外,需配置通风、照明、监控、消防、逃生等

运营与防灾

简单,对防灾安全要求低

对运营安全要求高,需进行消防、逃生等防灾设计

道路特征与交通组织

相对容易

空间有限、封闭,视距等受影响,内外衔接相对困难

建设特征

空间位置

高架或地面

地下深埋或浅埋

影响因素

地质、地形

除地面影响外,受管线、地下其它设施影响较大

施工技术

简单

技术难度大、风险高

效益

初期投入少

初期投入较大,但环境保护等长远效益明显,综合优势明显

  图5.1-1城市地下道路典型断面

城市地下道路隧道与公路隧道也不同。

除了地理位置差异,在建设条件、交通特点、技术标准等方面也有较大差异。

城市地下道路隧道位于城市区域,人口稠密,建筑物多,难度大,风险高;交通特点也不一样;城市地下道路以小客车为主;一般设有多点进出。

另外隧道附属设施的要求也相对较高。

具体比较见表5.1-2。

  表5.1-2城市地下道路与公路隧道不同 

差异

公路隧道

城市地下道路

建设条件

主要受地质、地形因素影响

⑴穿越城市中心区,地下管线、地下构筑物多

⑵受沿线开发、拆迁等影响较大

交通特点

客货混行、包含重载交通

⑴交通组成较为单一

⑵交通流量大

道路特点与交通组织

以单点进出为主,线形、技术标准要求较高,交通组织简单

⑴建筑横断面形式多样,如通孔、双层等

⑵存在多点进出、服务沿线重点区域

⑶受地下设施影响,部分路段平、纵线形技术标准较低,尤其是匝道等

⑷道路总体走向受城市道路路网布局、详规控制

⑸需考虑与地面道路衔接,统筹布置。

功能性

功能单一,主要承担交通功能

⑴复合功能性强,不仅承担交通功能,还与高压电缆、输水管线、光缆等管线共构

⑵或与轨道通孔,形成路轨公用断面

附属设施与安全防灾等

相对简单

⑴通风差异,存在道路分岔、车流汇入与分离影响,对洞口污染排放要求高

⑵交通监控复杂,需要与周边路网联动协调,进行统一规划

技术标准

以公路隧道和公路线形设计相关规范为依据

采用城市道路工程技术标准,小客车专用时采用小客车专用技术标准

  

  图5.1-2城市地下道路隧道

  

  图5.1-3公路隧道

城市地下道路从功能上讲,主要有以下几种类型:

  ①穿越江河、山体等障碍物的城市地下道路。

如上海市区穿越黄浦江的越江隧道;南京、武汉市区穿越长江的隧道;北京市区穿越西山风景区的西山隧道等。

  ②穿越一个或多个交叉口的城市地下道路。

这种类型的地下道路通常也称为城市下立交,其功能是为了改善节点的交通矛盾、或改善区域景观环境而设置。

比如北京市奥运公园地下大屯路隧道、慧忠路隧道;上海市穿越世纪大道的东方路隧道等。

  ③系统多点进出的城市地下道路。

这种类型的地下道路通常较长、规模较大,并设多个进出口,与路网连续较为紧密,以服务中长距离交通为主。

在交通网络中承担了较强的系统性交通功能。

  ④改善城市区域到发交通、沟通联系地下车库、整合车库资源的城市地下道路。

比如北京的中关村、金融街等在地下形成连接多个地下车库的地下道路系统。

  城市地下道路按照长度又分为特长距离、长距离、中距离和短距离地下道路隧道,见表5.1-3。

 

  表5.1-3城市地下道路长度分类 

分类

特长距离地下道路

长距离地下道路

中距离地下道路

短距离地下道路

长度L(m)

L>3000m

3000m≥L>1000m

1000m≥L>500m

L≤500m

  城市地下道路根据服务对象可分为机动车专用地下道路和机动车及行人非机动车共用地下道路。

根据服务车型,可分为混行车地下道路和小客车专用地下道路。

城市地下道路根据主线封闭段长度及交通情况,按防火灾设计要求分为四类,见表5.1-4。

  表5.1-4城市地下道路防火设计分类 

用途

封闭段长度L(m)

一类

二类

三类

四类

可通行危险化学品等机动车

L>1500m

500

≤500m

 

仅限通行非危险化学品等机动车

L>3000m

1500

500

L≤500m

  注:

L为主线封闭段的长度。

2 总体设计 

地下道路的总体设计应符合现行行业标准《城市道路工程设计规范》(CJJ37)的规定,同时应符合下列要求:

  ①与城市路网合理衔接,与区域路网规划、区域地下空间规划相结合。

  ②符合城市地下空间规划确定的深度分层、限界。

  ③处理好与地面交通、城市历史风貌、城市空间环境的关系。

  ④处理好与市政管线、轨道交通设施、综合管廊及地下文物等其它地下基础设施关系,合理安排节约化利用地下空间。

  城市地下道路总体设计包括地下道路与城市路网、地下空间开发的相互关系。

从功能、使用、安全等方面,处理好地下道路线形设计中的平面、纵断面和横断面,满足视距要求,确保行车安全与舒适。

规划布置出入口位置、间距和形式的综合设计及出入口交通组织,协调与地面交通的衔接,保证地下道路主线通畅,进出交通有序,与周边路网衔接顺畅。

城市地下道路交通设施设计应加强安全行车引导,交通设施应简洁、可视性好、易识别。

同时城市地下道路设计应根据规划预留必要的实施条件。

  城市地下道路结构主体设计,应满足耐久性设计要求。

主体结构的设计年限为100年。

主体结构应分别对施工阶段和使用阶段按承载能力极限状态及正常使用极限状态进行设计。

道路路面结构应满足耐久性和稳定性的要求,沥青路面结构设计使用年限不应小于15年,水泥混凝土路面结构设计使用年限不应小于30年。

当采用沥青混凝土路面时应具有阻燃性好、噪音低的性能。

  城市地下道路设计还应根据通风、供电、照明、监控、防灾等要求,进行综合设计。

城市地下道路设计应符合国家环保政策、法规,注重环境保护和资源节约,在满足安全、经济、可靠的原则下,体现节能环保。

对通风、照明等能耗较大的设备,选用高效、低能耗的产品进行节能设计。

  城市地下道路设计应开展景观设计,洞口、洞内装饰以及风亭等美化设计应与周围城市环境相协调。

城市地下道路设计应根据工程地质与周边环境,从技术、经济、工期、环境影响等方面综合比较,选择合理的结构型式和施工工法。

3 隧道线形设计

城市地下道路的平、纵线形要素的设计原理和方法与地面道路基本一致。

但在总体布置、设计原则、考虑因素、相关技术标准等方面存在一定的差异,以适合地下道路的建设要求。

隧道线形设计包括5个部分的内容。

3.1 平面线形

城市地下道路的平面线形布置除受城市道路网布局、地区控制性详细规划、道路规划红线宽度等影响外,还受到地下管线设施、建筑物基础的影响。

另外在地下封闭空间,司乘人员的行车视线受两侧侧墙和顶板等影响强烈,地下道路的平面线形布置应注意对行车视距的保障,保证线形流畅,自然诱导驾驶人视线。

  对于上、下分离的独立双洞的地下道路,在平面线形布置时,应保证双洞之间的最小净距。

净距离过小会对相互结构产生不利影响,甚至会影响到地面沉降。

但距离多大,对道路在两端地面展线不利。

在现行的《公路隧道设计规范》(JTGD70)中,隧道间净距根据地层围岩等级的不同,有一个比较明确的规定。

在一些城市的地方标准中,也有类似的规定。

比如在一些地方标准中,对平行盾构隧道的净距要求不宜小于D(盾构直径)。

  地下道路平面线形设计尽可能采用较大的圆曲线半径,圆曲线半径过小会存在视距难以保证,需要加宽或设置超高。

半径过小也不利于通风。

  道路圆曲线最小半径是根据曲线路段车辆能够安全、顺适地行驶所需的条件而确定的,与设计速度、横向力系数和路面超高有关,从理论计算上,地下道路与地面道路没有差异,可取用与地面相同的标准。

但在实际使用中,地下道路最小圆曲线半径的设置受最大超高和行车视距的限制。

当采用不同超高时,应根据城市道路相关设计规范进行计算。

当采用城市道路设计规范规定的极限最小半径或一般最小半径时,必须进行视距验算,并采取一定的措施满足停车视距的要求。

3.2 纵断面线形

地下道路的纵断面布置应根据地质条件、地下管线(建筑物)、结构安全、施工工艺等因素综合确定。

对于明挖施工的地下道路隧道,考虑到道路路面结构及地下管线的设置要求,一般埋深不宜小于2m。

对于盾构隧道,考虑到结构设计要求以及对地面沉降控制的要求,一般埋深不宜小于0.65D。

竖向曲线的布置应结合各地要求,综合选择确定。

  道路纵坡的选取应分别满足最大纵坡和最小纵坡的要求。

最大纵坡是纵断面设计的一项重要指标,直接影响路线长度、行驶舒适性、安全及工程技术经济性。

道路最大纵坡主要依据车辆的动力特性、道路等级、自然条件、运营经济性等。

城市地下道路设计速度大于或等于50km/h的极限纵坡限制值应不超过5%。

城市地下道路的纵坡取值如下:

  表5.3-1城市地下道路最大纵坡

设计速度(km/h)

80

60

50

40

30

20

一般值%

3

4

4.5

5

7

8

最大值%

5

6

8

  城市地下道路的纵断面设计还需要满足最小纵坡的要求,最小纵坡的确定依据是保证道路排水和防止管道淤塞。

规范要求城市地下道路的最小纵坡为0.3%。

  城市地下道路标高通常比两端的地面低,为防止周边雨水等汇入,通常在地下道路引导两端接地口处设置倒坡,形成排水驼峰。

3.3 平纵组合设计

地下道路在进行平纵曲线组合时,应注意前、后线形的协调,线形指标应逐渐过渡,防止突变。

降低对行驶安全的不利影响。

在平纵组合设计时,应尽量做得“平包竖,平纵相互对应”。

但条件受限不能做到时,应避免平面、纵断面极限值组合设计,避免长纵坡、大纵坡底接小曲线半径等。

3.4 进出洞口线形设计

地下道路在进洞、出洞时,由于光线急剧变化、行驶条件发生差异,易发交通事故。

因此洞口段的线形是地下道路设计重点之一。

洞内外线形应在一定距离里保持一致性,自然诱导驾驶人视线,避免出现突变。

城市地下道路的建设环境复杂,洞口线形设计应最大限度地顺应地形、与周围复杂的环境条件相协调,使总体方案最合理,在有条件的情况下应保持3s行程范围的一致性。

3.5 停车视距

城市地下道路的平纵线形设计中,还应考虑停车视距的要求。

停车视距是指驾驶人自察觉前方道路存在障碍物时起,能够及时采取制动措施,直至车辆安全停稳的最短距离。

停车视距是地下道路设计的重要技术指标,设计中需要严格验算。

城市地下道路设计的停车视距可以采用与地面道路相同的技术标准。

但是在地下道路的进出口处,由于洞口亮度的急剧变化会造成驾驶人不适,应采用较高的停车视距标准。

综合现有的研究成果,洞口段的停车视距可取正常路段的1.5倍,详见表5.3-2。

  表5.3-2城市地下道路停车视距

设计速度(km/h)

80

60

50

40

30

20

停车视距

110

70

60

40

30

20

1.5倍停车视距

165

105

90

60

45

30

  车辆在平曲线上行驶时,地下道路中的侧墙可能妨碍驾驶员的视线,成为障碍物。

应进行行车视距验算。

如图5.3-1所示,S为停车视距,AB为车辆从A点至障碍物B的视线、Z0为行车线至障碍物曲线内侧障碍物的距离,Z为行车线至视线的距离即为横净距。

车辆在曲线上行驶,保证其视距的视线随之移动,行程若干视距线,与之相切形成的曲线(即包络线PQ曲线),如图5.3-2。

当平曲线半径大时,Z0>Z则满足视距,可不做处理。

当验算停车视距不足时,可增加曲线半径或增大侧向净宽等方面改善视距,如条件受限无法通过线形改善视距时,可采取限速措施,保证停车视距和行车安全。

  

  图5.3-1平曲线内侧障碍物的清除

  

  图5.3-2平曲线上视距清除曲线

  此外规范还要求,城市地下道路设置凹型竖曲线路段,也必须进行停车视距验算。

因地下道路的顶部可能会遮挡行车视线,验算图示见图5.3-3。

  

  图5.3-3凹曲线停车视距图

4 隧道主体设计

隧道主体设计包括隧道建筑限界、隧道断面布置、主体结构设计、防排水设计、隧道施工方案、以及隧道装饰与景观。

主体设计包含以下6部分内容。

4.1 隧道建筑限界

隧道建筑限界主要依据地下道路设计速度确定。

城市地下道路的设计速度宜与两端接线的地面道路相同,具体设计速度的选择应根据道路功能、通行能力、工程造价、运营成本、施工风险、控制条件以及工程建设性质等因素综合论证确定。

  短距离的城市地下道路应与两端接线的地面道路采用相同的设计速度。

  除短距离的地下道路外,其它地下道路的设计速度一般不应大于80km/h。

  表5.4-1各级城市地下道路的设计速度 

道路等级

快速路

主干路

次干路

支路

设计速度(km/h)

100

80

60

60

50

40

50

40

30

40

30

20

  隧道建筑限界为道路净高线和两侧侧向净宽边线组成的空间界线,建筑限界内不得有任何物体侵入。

城市地下道路隧道的建筑限界分为⑴不含人行道或检修道⑵包含人行道或检修道⑶含有非机动车道和人行道等3种情况。

见图5.4-1~5.4-3。

  

  图5.4-1不含人行道或检修道

  

  图5.4-2包含人行道或检修道

  

  图5.4-3含有非机动车道和人行道

建筑限界组成最小取值应满足表5.4-2的规定。

建筑限界顶角宽度(E)不应大于机动车道或非机动车道的侧向净宽度。

非机动车道路面宽度Wpb或人行道宽度Wp应符合现行行业标准《城市道路工程设计规范》(CJJ37)的规定。

城市地下道路当两侧设置人行道或检修道时,可不设安全带宽度。

  表5.4-2建筑限界组成最小值 

建筑限界组成

路缘带宽度Wmc

安全带宽度Wsc

检修道宽度Wj

人行道或检修道高度

顶角高度H

≥60km/h

<60km/h

Hc<3.5m

Hc≥3.5m

取值(m)

0.50

0.25

0.25

0.75

0.25~0.4

0.20

0.50

  城市地下道路最小净高应符合表5.4-3的规定。

根据不同服务车型,选择净高标准。

对于小客车专用道,一般情况下最小净高应采用一般值;但条件受限时可采用最小值,即最小净高为3.2m。

  表5.4-3城市地下道路最小净高 

道路种类

行驶交通类型

净高(m)

机动车道

小客车

一般值

3.5

最小值

3.2

各种机动车

4.5

非机动车道

非机动车

2.5

人行或检修道

2.5

4.2 隧道横断面布

城市地下道路机动车道的宽度应符合《城市道路工程设计规范》(CJJ37)的规定。

当采用小客车专用道时,车行道宽度可适当压缩,但应符合表5.4-4的规定。

  表5.4-4小客车专用地下道路的一条机动车道宽度 

设计速度(km/h)

>60

≤60

车道宽度(m)

一般值

3.50

3.25

最小值

3.25

3.00

  道路横断面设计是在城市规划的红线宽度范围内,考虑道路功能等级、设计速度、交通流量、服务对象等因素,确定横断面形式和各组成尺寸。

城市地下道路除了满足上述要求外,还需要为通风、照明、消防、监控等运营所需设施、设备及在应急情况下的逃生疏散、救援等提供必要的空间;同时还要考虑施工实际水平、预留结构变形、施工误差、路面调坡等余量。

  城市地下道路横断面空间大致可分为⑴交通通行空间⑵设施设备空间⑶安全空间等。

道路横断面设计,实际上就是在有效的空间中,既要满足交通安全畅通,又要满足设施设备的安装以及人员安全疏散的要求。

  交通通行空间是建筑限界规定的范围内,包含机动车道、路缘带等,部分城市地下道路包括人行道与非机动车道。

特殊断面还包括紧急停车带以及检修道等。

各组成断面的宽度应根据地下道路功能等级、设计速度、经济成本及施工难度等综合确定。

  设施设备空间主要是利用建筑限界之外的上部、下部以及两侧与结构之间的空间,为通风、排水、消防、供电照明、监控、内装饰等附属设施提供安装空间。

设备空间与交通通行空间应保留一定距离。

  

  图5.4-4通行空间与设施设备空间关系图

安全空间是为了应急情况下的人员安全疏散以及救援提供的空间。

安全空间可以根据地下道路横断面形式选择上下层疏散楼梯、避难室、横通道等不同方式。

不论采用何种安全疏散方式,安全空间的设置应综合考虑交通通行空间、设施设备空间,协调处理好三者关系。

  常见的单层和双层横断面布置图见图5.4-5图和5.4-6。

  

  图5.4-5单层横断面布置图

  

  图5.4-6双层横断面布置图

  城市地下道路不宜采用在同一通行孔布置双向交通。

当断面布置困难时,对设计速度大于或等于50km/h的短距离城市地下道路,可在同一通行孔布置双向交通,但必须采用中央防撞设施进行隔离;对设计速度小于50km/h的城市地下道路,当在同一通行孔布置双向交通时,应采用中央安全隔离措施;同时应保证运营管理安全可靠。

4.3 隧道主体结构

地下道路结构根据施工工艺分为明挖法、暗挖(矿山)法、盾构法和沉管法。

各种工法及适用条件、特点比较见表5.4-5。

城市地下道路结构设计应根据工程地质条件、周边环境,从技术、经济、工期、环境影响等方面综合比较,选择合理的结构形式和施工工法。

  表5.4-5四种结构形式的工法比较:

 

明挖法

暗挖(矿山)法

盾构法

沉管法

适用地质复杂

各种地质条件

地质条件好、地层稳定。

土层地质条件

适用水底地形平坦、水深及跨度较小情况

适应复杂结构(变宽、分合流匝道)

能适应各种变化

能适应部分变化

不适应

不适应

关键技术问题

基坑支护、降低地下水位、土方开挖、结构防水

断层破碎带的支护、加固、堵水、结构防水

推进施工的良好后盾系统、确保洞口土体稳定、洞口建筑密封

管段制作与装配、基础处理、沉放、连接、接缝防水

优势

施工简单、快捷、经济、安全

 

施工复杂、拆迁少、没有交通疏解

 

开挖与支护一次完成、掘进速度快;

不影响地面交通与地下管线等设施;技术和经济具有优越性

对地质条件适应性强;隧道断面利用率高;施工周期短;操作条件好,施工安全;

劣势

对城市生活有干扰、对周边环境有一定影响;

 

对周围岩层扰动较大,对地质勘探要求高,对围岩地质条件预测差

断面尺寸多变的区段适应力差;

短距离隧道不经济,定制费高

沉管对于河道上的船舶交通会有影响

 

结论

适应性很好,但受明挖基坑深度限制

适应性较好,受地质条件影响较大

土层适应性好,但结构断面变化受限

只适用于水底

城市地下道路隧道出入口、地下道路分合流段等通常采用明挖法施工,在建设场地开阔、建筑物较少及环境条件许可的情况下也尽可能采用明挖结构。

明挖结构通常采用矩形断面、一般为现浇施工。

优点是断面能适应各种变化,与城市地下道路隧道的建筑限界也比较接近,结构受力合理,顶板上也便于敷设各种地下管线与设施。

采用明挖法施工的隧道横断面布置见图5.4-5单层横断面布置图。

  暗挖法施工的城市地下道路隧道一般采用复合衬砌结构。

复合衬砌结构通常由内、外两层衬砌和中间防水层组成。

外层衬砌又称初期支护,其作用是加固围岩,控制围岩变形,防止围岩松动失稳。

初期支护要求开挖后立即施作,喷射混凝土与围岩密贴,在尽短的时间内加固开挖面。

初期支护包括打设锚杆、架设钢支撑(钢拱架)、喷射混凝土等。

内层衬砌称为二期支护,一般是在初期支护变形稳定后施作。

二期支护结构是主要的承载单元,根据围岩等级不同,二衬混凝土承载的荷载比例也不相同。

通常情况下二衬施工采用模筑混凝土。

防水层铺设在初期支护与二期支护之间。

采用暗挖法施工的隧道横断面布置见图5.4-7。

  

  图5.4-7暗挖法结构断面

盾构法是暗挖法施工中的一种全机械化施工方法,它是将盾构机械在土层中推进,通过盾构外壳和管片支承四周土层,防止发生往隧道内的坍塌,同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。

  盾构法具有以下优点:

  1)安全开挖和衬砌,掘进速度快;

  2)盾构的推进、出土、拼装衬砌等全过程可实现自动化作业,施工劳动强度低。

  3)不影响地面交通与设施,同时不影响地下管线等设施;

  4)穿越河道时不影响航运,施工中不受季节、风雨等气候条件影响,施工中没有噪音和扰动;

  5)在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。

盾构法也

  有以下缺点:

  1)价格昂贵且针对性很强,对每一条用盾构施工的隧道,都需要根据工程地质、水文地质条件以及结构断面尺寸专门进行设计制造,一般不能简单地在其它隧道中重复使用;

  2)隧道曲率半径过小或隧道顶覆土太浅时施工难度较大;

  3)在富水松软土层中,地表沉降难以控制,对衬砌整体防水技术要求很高;

  4)对水底隧道,覆土太浅时施工不够安全;

  

  图5.4-8复合式泥水平衡盾构机

  

  图5.4-9盾构隧道断面

  沉管隧道是一种水下隧道的建设方法。

采用预制的方式建造隧道,然后将预制段分别浮运到隧址,通过沉放对接,在开挖的水下基槽内将各预制段一节一节连接起来,形成一个贯通的隧道。

  沉管隧道的结构断面一般有圆形和矩形。

一般圆形断面多采用钢壳混凝土,矩形断面多采用钢筋

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2