凸轮设计外文翻译参考文献.docx

上传人:b****6 文档编号:8904705 上传时间:2023-05-15 格式:DOCX 页数:29 大小:374.68KB
下载 相关 举报
凸轮设计外文翻译参考文献.docx_第1页
第1页 / 共29页
凸轮设计外文翻译参考文献.docx_第2页
第2页 / 共29页
凸轮设计外文翻译参考文献.docx_第3页
第3页 / 共29页
凸轮设计外文翻译参考文献.docx_第4页
第4页 / 共29页
凸轮设计外文翻译参考文献.docx_第5页
第5页 / 共29页
凸轮设计外文翻译参考文献.docx_第6页
第6页 / 共29页
凸轮设计外文翻译参考文献.docx_第7页
第7页 / 共29页
凸轮设计外文翻译参考文献.docx_第8页
第8页 / 共29页
凸轮设计外文翻译参考文献.docx_第9页
第9页 / 共29页
凸轮设计外文翻译参考文献.docx_第10页
第10页 / 共29页
凸轮设计外文翻译参考文献.docx_第11页
第11页 / 共29页
凸轮设计外文翻译参考文献.docx_第12页
第12页 / 共29页
凸轮设计外文翻译参考文献.docx_第13页
第13页 / 共29页
凸轮设计外文翻译参考文献.docx_第14页
第14页 / 共29页
凸轮设计外文翻译参考文献.docx_第15页
第15页 / 共29页
凸轮设计外文翻译参考文献.docx_第16页
第16页 / 共29页
凸轮设计外文翻译参考文献.docx_第17页
第17页 / 共29页
凸轮设计外文翻译参考文献.docx_第18页
第18页 / 共29页
凸轮设计外文翻译参考文献.docx_第19页
第19页 / 共29页
凸轮设计外文翻译参考文献.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

凸轮设计外文翻译参考文献.docx

《凸轮设计外文翻译参考文献.docx》由会员分享,可在线阅读,更多相关《凸轮设计外文翻译参考文献.docx(29页珍藏版)》请在冰点文库上搜索。

凸轮设计外文翻译参考文献.docx

凸轮设计外文翻译参考文献

凸轮设计外文翻译参考文献

(文档含中英文对照即英文原文和中文翻译)

 

FailureAnalysis,DimensionalDeterminationAndAnalysis,ApplicationsOfCams

INTRODUCTION

Itisabsolutelyessentialthatadesignengineerknowhowandwhypartsfailsothatreliablemachinesthatrequireminimummaintenancecanbedesigned.Sometimesafailurecanbeserious,suchaswhenatireblowsoutonanautomobiletravelingathighspeed.Ontheotherhand,afailuremaybenomorethananuisance.Anexampleisthelooseningoftheradiatorhoseinanautomobilecoolingsystem.Theconsequenceofthislatterfailureisusuallythelossofsomeradiatorcoolant,aconditionthatisreadilydetectedandcorrected.

Thetypeofloadapartabsorbsisjustassignificantasthemagnitude.Generallyspeaking,dynamicloadswithdirectionreversalscausegreaterdifficultythanstaticloads,andtherefore,fatiguestrengthmustbeconsidered.Anotherconcerniswhetherthematerialisductileorbrittle.Forexample,brittlematerialsareconsideredtobeunacceptablewherefatigueisinvolved.

Manypeoplemistakinglyinterpretthewordfailuretomeantheactualbreakageofapart.However,adesignengineermustconsiderabroaderunderstandingofwhatappreciabledeformationoccurs.Aductilematerial,howeverwilldeformalargeamountpriortorupture.Excessivedeformation,withoutfracture,maycauseamachinetofailbecausethedeformedpartinterfereswithamovingsecondpart.Therefore,apartfails(evenifithasnotphysicallybroken)wheneveritnolongerfulfillsitsrequiredfunction.Sometimesfailuremaybeduetoabnormalfrictionorvibrationbetweentwomatingparts.Failurealsomaybeduetoaphenomenoncalledcreep,whichistheplasticflowofamaterialunderloadatelevatedtemperatures.Inaddition,theactualshapeofapartmayberesponsibleforfailure.Forexample,stressconcentrationsduetosuddenchangesincontourmustbetakenintoaccount.Evaluationofstressconsiderationsisespeciallyimportantwhentherearedynamicloadswithdirectionreversalsandthematerialisnotveryductile.

Ingeneral,thedesignengineermustconsiderallpossiblemodesoffailure,whichincludethefollowing.

——Stress

——Deformation

——Wear

——Corrosion

——Vibration

——Environmentaldamage

——Looseningoffasteningdevices

Thepartsizesandshapesselectedalsomusttakeintoaccountmanydimensionalfactorsthatproduceexternalloadeffects,suchasgeometricdiscontinuities,residualstressesduetoformingofdesiredcontours,andtheapplicationofinterferencefitjoints.

Camsareamongthemostversatilemechanismsavailable.Acamisasimpletwo-memberdevice.Theinputmemberisthecamitself,whiletheoutputmemberiscalledthefollower.Throughtheuseofcams,asimpleinputmotioncanbemodifiedintoalmostanyconceivableoutputmotionthatisdesired.Someofthecommonapplicationsofcamsare

——Camshaftanddistributorshaftofautomotiveengine

——Productionmachinetools

——Automaticrecordplayers

——Printingmachines

——Automaticwashingmachines

——Automaticdishwashers

Thecontourofhigh-speedcams(camspeedinexcessof1000rpm)mustbedeterminedmathematically.However,thevastmajorityofcamsoperateatlowspeeds(lessthan500rpm)ormedium-speedcamscanbedeterminedgraphicallyusingalarge-scalelayout.Ingeneral,thegreaterthecamspeedandoutputload,thegreatermustbetheprecisionwithwhichthecamcontourismachined.

DESIGNPROPERTIESOFMATERIALS

Thefollowingdesignpropertiesofmaterialsaredefinedastheyrelatetothetensiletest.

Figure2.7

StaticStrength.Thestrengthofapartisthemaximumstressthatthepartcansustainwithoutlosingitsabilitytoperformitsrequiredfunction.Thusthestaticstrengthmaybeconsideredtobeapproximatelyequaltotheproportionallimit,sincenoplasticdeformationtakesplaceandnodamagetheoreticallyisdonetothematerial.

Stiffness.Stiffnessisthedeformation-resistingpropertyofamaterial.Theslopeofthemoduluslineand,hence,themodulusofelasticityaremeasuresofthestiffnessofamaterial.

Resilience.Resilienceisthepropertyofamaterialthatpermitsittoabsorbenergywithoutpermanentdeformation.Theamountofenergyabsorbedisrepresentedbytheareaunderneaththestress-straindiagramwithintheelasticregion.

Toughness.Resilienceandtoughnessaresimilarproperties.However,toughnessistheabilitytoabsorbenergywithoutrupture.Thustoughnessisrepresentedbythetotalareaunderneaththestress-straindiagram,asdepictedinFigure2.8b.Obviously,thetoughnessandresilienceofbrittlematerialsareverylowandareapproximatelyequal.

Brittleness.Abrittlematerialisonethatrupturesbeforeanyappreciableplasticdeformationtakesplace.Brittlematerialsaregenerallyconsideredundesirableformachinecomponentsbecausetheyareunabletoyieldlocallyatlocationsofhighstressbecauseofgeometricstressraiserssuchasshoulders,holes,notches,orkeyways.

Ductility.Aductilitymaterialexhibitsalargeamountofplasticdeformationpriortorupture.Ductilityismeasuredbythepercentofareaandpercentelongationofapartloadedtorupture.A5%elongationatruptureisconsideredtobethedividinglinebetweenductileandbrittlematerials.

Malleability.Malleabilityisessentiallyameasureofthecompressiveductilityofamaterialand,assuch,isanimportantcharacteristicofmetalsthataretoberolledintosheets.

Hardness.Thehardnessofamaterialisitsabilitytoresistindentationorscratching.Generallyspeaking,theharderamaterial,themorebrittleitisand,hence,thelessresilient.Also,theultimatestrengthofamaterialisroughlyproportionaltoitshardness.

Machinability.Machinabilityisameasureoftherelativeeasewithwhichamaterialcanbemachined.Ingeneral,theharderthematerial,themoredifficultitistomachine.

Figure2.8

COMPRESSIONANDSHEARSTATICSTRENGTH

Inadditiontothetensiletests,thereareothertypesofstaticloadtestingthatprovidevaluableinformation.

CompressionTesting.Mostductilematerialshaveapproximatelythesamepropertiesincompressionasintension.Theultimatestrength,however,cannotbeevaluatedforcompression.Asaductilespecimenflowsplasticallyincompression,thematerialbulgesout,butthereisnophysicalruptureasisthecaseintension.Therefore,aductilematerialfailsincompressionasaresultofdeformation,notstress.

ShearTesting.Shafts,bolts,rivets,andweldsarelocatedinsuchawaythatshearstressesareproduced.Aplotofthetensiletest.Theultimateshearingstrengthisdefinedasthestressatwhichfailureoccurs.Theultimatestrengthinshear,however,doesnotequaltheultimatestrengthintension.Forexample,inthecaseofsteel,theultimateshearstrengthisapproximately75%oftheultimatestrengthintension.Thisdifferencemustbetakenintoaccountwhenshearstressesareencounteredinmachinecomponents.

DYNAMICLOADS

Anappliedforcethatdoesnotvaryinanymanneriscalledastaticorsteadyload.Itisalsocommonpracticetoconsiderappliedforcesthatseldomvarytobestaticloads.Theforcethatisgraduallyappliedduringatensiletestisthereforeastaticload.

Ontheotherhand,forcesthatvaryfrequentlyinmagnitudeanddirectionarecalleddynamicloads.Dynamicloadscanbesubdividedtothefollowingthreecategories.

VaryingLoad.Withvaryingloads,themagnitudechanges,butthedirectiondoesnot.Forexample,theloadmayproducehighandlowtensilestressesbutnocompressivestresses.

ReversingLoad.Inthiscase,boththemagnitudeanddirectionchange.Theseloadreversalsproducealternatelyvaryingtensileandcompressivestressesthatarecommonlyreferredtoasstressreversals.

ShockLoad.Thistypeofloadisduetoimpact.Oneexampleisanelevatordroppingonanestofspringsatthebottomofachute.Theresultingmaximumspringforcecanbemanytimesgreaterthantheweightoftheelevator,Thesametypeofshockloadoccursinautomobilespringswhenatirehitsabumporholeintheroad.

FATIGUEFAILURE-THEENDURANCELIMITDIAGRAM

ThetestspecimeninFigure2.10a.,afteragivennumberofstressreversalswillexperienceacrackattheoutersurfacewherethestressisgreatest.Theinitialcrackstartswherethestressexceedsthestrengthofthegrainonwhichitacts.Thisisusuallywherethereisasmallsurfacedefect,suchasamaterialflaworatinyscratch.Asthenumberofcyclesincreases,theinitialcrackbeginstopropagateintoacontinuousseriesofcracksallaroundtheperipheryoftheshaft.Theconceptionoftheinitialcrackisitselfastressconcentrationthatacceleratesthecrackpropagationphenomenon.Oncetheentireperipherybecomescracked,thecracksstarttomovetowardthecenteroftheshaft.Finally,whentheremainingsolidinnerareabecomessmallenough,thestressexceedstheultimatestrengthandtheshaftsuddenlybreaks.Inspectionofthebreakrevealsaveryinterestingpattern,asshowninFigure2.13.Theouterannularareaisrelativelysmoothbecausematingcrackedsurfaceshadrubbedagainsteachother.However,thecenterportionisrough,indicatingasuddenrupturesimilartothatexperiencedwiththefractureofbrittlematerials.

Thisbringsoutaninterestingfact.Whenactualmachinepartsfailasaresultofstaticloads,theynormallydeformappreciablybecauseoftheductilityofthematerial.

Figure2.13

Thusmanystaticfailurescanbeavoidedbymakingfrequentvisualobservationsandreplacingalldeformedparts.However,fatiguefailuresgivetowarning.Fatiguefailmatedthatover90%ofbrokenautomobilepartshavefailedthroughfatigue.

Thefatiguestrengthofamaterialisitsabilitytoresistthepropagationofcracksunderstressreversals.Endurancelimitisa

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2