高中物理力学总结.docx

上传人:b****8 文档编号:8975278 上传时间:2023-05-16 格式:DOCX 页数:21 大小:33.19KB
下载 相关 举报
高中物理力学总结.docx_第1页
第1页 / 共21页
高中物理力学总结.docx_第2页
第2页 / 共21页
高中物理力学总结.docx_第3页
第3页 / 共21页
高中物理力学总结.docx_第4页
第4页 / 共21页
高中物理力学总结.docx_第5页
第5页 / 共21页
高中物理力学总结.docx_第6页
第6页 / 共21页
高中物理力学总结.docx_第7页
第7页 / 共21页
高中物理力学总结.docx_第8页
第8页 / 共21页
高中物理力学总结.docx_第9页
第9页 / 共21页
高中物理力学总结.docx_第10页
第10页 / 共21页
高中物理力学总结.docx_第11页
第11页 / 共21页
高中物理力学总结.docx_第12页
第12页 / 共21页
高中物理力学总结.docx_第13页
第13页 / 共21页
高中物理力学总结.docx_第14页
第14页 / 共21页
高中物理力学总结.docx_第15页
第15页 / 共21页
高中物理力学总结.docx_第16页
第16页 / 共21页
高中物理力学总结.docx_第17页
第17页 / 共21页
高中物理力学总结.docx_第18页
第18页 / 共21页
高中物理力学总结.docx_第19页
第19页 / 共21页
高中物理力学总结.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高中物理力学总结.docx

《高中物理力学总结.docx》由会员分享,可在线阅读,更多相关《高中物理力学总结.docx(21页珍藏版)》请在冰点文库上搜索。

高中物理力学总结.docx

高中物理力学总结

高中物理力学知识总结

第一单元:

力学中的三种常见力物体受力分析

一、力的概念

1、力:

力是。

力不能。

一个物体受到力的作用,一定有对它施加这种作用。

2、力的效果:

使受力物体的或发生变化,或。

我们可以通过力的作用效果来检验力的存在与否,上述两种效果可以独立产生,也可以同时产生。

3、力是矢量,在三要素:

要完整的表述一个力既要说明它的大小,又要说明它的方向。

为形象、直观的表述一个力,我们一般用来表示力的,这各表示力的方法叫力的图示。

作力的图示应注意以下两个问题:

一是不能用不同的标度画同一物体所受的不同力;二是力的图示与力的示意图不同,力的图示要求严格,而力的示意图着重于力的方向,不要求做出标度。

4、力的分类:

在力学中按可分为:

重力、弹力、摩擦力等;按可分为:

拉力、压力、支持力、动力、阻力等。

性质相同的力效果可以不同,也可以相同;效果相同的力,性质可以相同,也可以不同。

5、力的单位:

在国际单位制中,力的单位是。

6、力的测量用。

二、重力

1、产生:

是由于而产生的。

2、重力的大小:

重力与质量的关系为.重力的大小可用测出,其大小在数值上等于物体静止时对水平支持面的压力或者对竖直悬绳的拉力。

3、重力的方向:

4、物体所受重力的等效作用点。

质量分布均匀的物体,重心的位置只跟物体的5有关,形状规则且质量分布均匀的物体,它的重心就在其上。

不规则物体的重心位置,除跟物体的形状有关外,还跟物体质量的分布有关。

对于形状不规则或者质量分布不均匀的薄板,可用测定其重心的位置。

因为重心为一等效概念,所以物体的重心不一定在物体上,可能在物体外,也可能在物体之内。

如圆环的重心就不在圆环上。

三、弹力

1、定义:

发生形变的物体由于要恢复原状,会对产生力的作用,这种力叫弹力。

2、产生条件:

一是二是。

3、弹力的方向:

一是压力、支持力的方向指向被压、被支持的物体。

二是绳的拉力方向总是沿着的方向。

三是弹力方向可以说成与施力物体形变的方向相反。

4、弹力大小的计算:

一是胡克定律,既在弹性限度内,弹簧产生的弹力大小与形变量成正比,即F=。

其中K是由弹簧本身特性决定的物理量(注意和弹簧匝数有关),叫劲度系数。

X表示弹簧伸长或被压缩之后的长度与没有发生形变时的长度之差,即弹簧的形变量。

二是除弹簧外,其他物体所受的弹力的大小,通常利用平衡条件或动力学规律建立方程求解。

四、滑动摩擦力

1、定义:

一个物体在另一个物体表面上另一个物体的时候,要受到另一个物体的力,这种力就叫滑动摩擦力。

2、产生条件:

一是二是三是。

3、滑动摩擦力的方向总跟接触面,并且跟物体的方向相反。

4、滑动摩擦力的大小跟成正比,也就是成正比。

公式为F=。

F表示滑动摩擦力的大小,FN表示压力的大小,μ叫动摩擦因数。

5、效果:

总是物体间的,但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

五、静摩擦力

1、产生条件:

2、方向与接触面,并与物体的方向相反。

3、大小:

一是随着相对运动趋势强弱变化而在零到最大值之间变化。

跟运动趋势的强弱程度有关,但跟接触面相互挤压的力FN无直接关系。

二是最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们在数值上相等。

4、效果:

阻碍物体间的,但不一定阻碍物体的运动,可以是动力,也可是阻力。

六、物体受力分析

1、方法是隔离物体法。

将要受力分析的物体与其它物体隔离开,只分析受的到的力,不分析该物体对其它物体的力。

只分析性质力,不分析效果力。

2、受力分析的步骤:

一根据题意选取适当的,把要研究的对象从周围物体中出来选取的研究对象要有利于问题的处理,可以是单个物体,也可以是物体的一部分,也可以是几个物体组成的,即物体系,应视具体问题而定。

二按照先,再,再的顺序对物体进行受力分析,并画出物体的受力示意图,按此顺序分析受力可以防止漏力。

三在分析受力的过程中,要找到它的施力物体,没有施力物体的力是的,这样可以防止。

答案:

一、物体之间的相互作用;离开物体独立存在;另外的物体;体积;形状;使受力物体的运动状态发生变化;大小;方向;作用点;带箭头的线段;大小;方向;作用点;性质;效果;牛顿;测力计。

二、地球吸引;F=mg;测力计;竖直向下;形状;几何中心;悬挂法。

三、跟它直接接触的物体;两物体直接接触;发生弹性形变;垂直于接触面;绳子指向绳子收缩的方向;kx。

四、相对于;滑动;阻碍作用;直接接触、相互挤压;接触面粗糙;有相对运动;相切;相对运动;压力;跟一个物体对另一个物体表面的垂直作用力;μFN;阻碍;相对运动。

五、直接接触、相互挤压;接触面粗糙;有相对运动趋势;相切;相对运动趋势;相对运动。

六、这个物体;研究对象;隔离;系统;重力;弹力;摩擦力;不存在;多力。

第二单元:

力的合成与分解共点力作用下物体的平衡

一:

力的合成与分解

一、合力与分力一个力如果它产生的跟几个力共同产生的相同,则这个力就叫那几个力的,而那几个力就叫这个力的,合力与分力之间是等效代替。

二、平行四边形定则用表示两个共点力F1和F2的线段为作,那么,合力F的大小和方向就可以用这两个邻边之间的表示出来,这叫力的平行四边形定则。

三、力的合成

1、叫做力的合成。

2、已知两个共点力的大小分别为F1和F2,其方向之间的夹角为θ,那么:

A、在F1和F2大小不变的情况下,F1和F2之间夹角θ越大,合力F就;θ越小,其合力F。

当θ=0°时,F=,为F的;当θ=90°时,F=;

当θ=120°时,且F1=F2时,F=F1=F2;当θ=180°时,F=,为F的。

B、合力变化范围为≤F≤。

例如:

F1=5N,F2=7N,两力的合力变化范围就是≤F≤。

由此看出,合力可以大于分力,也可小于分力。

四、力的分解

1、叫力的分解,力的分解是力合成的。

2、把一个已知力分解时,如果没有限制条件,将有对大小、方向不同的分力。

如果加上一些条件,就可以得到确定的解,以下是几种常见的情况(请同学们自己作出示意图)。

已知合力和两个分力的方向,可求得两个分力的大小(唯一解)。

已知合力和一个分力的大小、方向,可求得另一个分力的大小和方向(唯一解)。

已知合力、一个分力F1的大小与另一个分力F2的方向,可求F2大小和F1的方向(这时要注意有一组解或两组解,当然也可能无解,也就是不能分解)。

附注:

以上所述均不包括合力方向与分力方向在一条直线上的情况。

3、在实际问题中,一舰是根据力的作用效果把力进行唯一分解。

如:

在光滑斜面上的下滑物体,其重力产生的效果一是,二是,故其重力的分解就按效果进行,分解为这两个方向的分力。

请同学们作出重力分解示意图,两个分力的大小分别是G1=,G2=。

但不能就此认为所有斜面上物体的重力都得这样分解,有时为了解题方便,我们会沿其它两个方向把斜面上物体的重力进行分解。

如:

竖直挡板将一球挡在斜面上静止不动时,其重力产生的效果一是,二是即应按这两个效果进行分解,请作出分解示意图,并写出两力G1=,G2=。

二:

共点力作用下物体的平衡

一、平衡状态物体保持或状态叫平衡状态。

注意:

静止状态是指和都为零的状态。

以下物体处于平衡状态的是:

A、竖直上抛物体达到最高点时;B、自由落体运动的初始状态;C、弹簧振子经过平衡位置的状态;D、弹簧振子经过最大位移处时的状态;E、单摆的摆球经过平衡位置时的状态;F、单摆摆球经过最大位移处时的状态;G、做匀速圆周运动物体所处的状态。

二、共点力作用下物体的平衡条件

该条件是。

1、如果物体在两个力的作用下处于平衡状态,这两个力必定大小,方向,为一对。

2、如果物体在三个力的作用下处于平衡状态,那么其中任意两个力的合力一定与第三个力大小,方向。

3、如果物体受多个力作用而处于平衡状态,其中任一力与其它力的合力大小方向。

三、三力汇交原理如果一个物体受到三个非平行力的作用而平衡,这三个力的作用线必定在同一平面内,而且为共点力。

(作用线或反向延长线交于一点)。

答案:

一:

效果效果合力分力邻边平行四边形对角线求几个力的合力越小越大二力和最大值根号下二力平方和二力差的绝对值最小值二力差的绝对值二力和2N12N求一个已知力的分力逆运算无数使物体下滑使物体压紧斜面GsinAGcosA使球压紧竖起挡板使球压紧斜面GtanAG/cosA

二:

匀速直线运动静止速度加速度C合力为零相等相反平衡力相等相反相等相反

第三单元:

描述运动的基本概念

一:

机械运动

一、机械运动一个物体相对另一个物体的改变叫做机械运动,它包括

和及。

二、参考系为了研究运动而假定为的物体叫参考系。

对于同一个物体的运动,所选参考系不同,对它运动的描述就可能不同,通常以为参考系研究物体的运动。

二:

质点

一、定义用来代替物体的的点,它是理想化的物理模型。

二、把物体看成质点的条件是物体的和对研究物体运动无影响。

三:

时刻与时间时刻指的是某一瞬时,在时间轴上用一个表示,对应是位置、速度、动量、动能等状态量,时间是两个时刻的间隔,在时间轴上用一个表示,它对应的是位移、路程、冲量、功等过程量。

四:

位移和路程:

一、路程:

物体运动的长度,是量。

二、位移:

物理意义:

描述物体的物理量,是量。

表示方法:

用由指向的带箭头的有向线段表示。

大小:

到的距离;方向:

指向。

五:

速度和速率:

一、速度:

是表示物体的物理量,它等于的比值。

公式为,单位是,它是矢量,方向描述运动方向。

1、平均速度:

变速直线运动中,运动物体的和所用的比值,表达式为

=s/t。

它只能粗略描述物体的运动情况,它也是矢量,方向即这段时间内的位移方向。

2、瞬时速度:

运动物体在(或经过某一位置)的速度,是矢量,它是对变速运动的精确描述,大小描述物体在该时刻或在该位置运动的快慢;方向描述运动的方向。

二、速率:

指的是速度的大小。

不过要注意:

平均速率指路程与时间的比值,是标量。

它并不一定是平均速度的大小。

而瞬时速度的大小就是瞬时速率。

这点要注意区分。

六:

加速度:

定义:

速度的跟发生这一改变所用时间的比值,表达式为a=。

物理意义:

描述的物理量,是矢量。

方向:

与方向相同,当a与v方向时,物体做加速运动;当a与v方向时,物体做减速运动;a为恒量时为匀变速;a为变量时为非匀变速,也叫变加速。

单位:

;含义是:

单位时间内速度的变化量。

答案:

一:

位置平动转动振动不动地球或相对地球不动的物体

二:

质量大小形状

三:

点线段

四:

轨迹标位置变动矢初位置末位置初位置末位置初位置末位置

五:

运动快慢位移s与发生这段位移所用时间v=s/tm/s位移时间某一时刻

六:

改变(Vt-Vo)/t速度改变快慢速度改变相同相反m/s2

第四单元:

匀速直线运动匀变速直线运动

一:

匀速直线运动

1、定义:

物体在一条直线上运动,如果,这种运动就叫匀速直线运动。

2、特点:

速度特点为和均不变。

位移特点为位移s跟发生这段位移s所用的时间t成,公式为。

二:

匀变速直线运动

1、定义:

物体在一条直线上运动,如果在相等的相等,这种运动即叫作匀变速直线运动。

2、特点:

a为。

包括大小和方向两个方面。

3、规律:

速度规律为;位移规律为;将两规律结合消去时间可得一个有用的推论为;另一个位移规律为。

4、推论:

A任意相邻两个连续相等的时间段内的位移之差是一个恒量,即△S==恒量。

B某段时间内的平均速度,等于该时间段内的中间时刻的瞬时速度,即

=Vt/2=。

C某段位移中点的瞬时速度等于初速度和末速度平方和一半的平方根。

即Vs/2=。

D初速度为零的匀变速直线运动还具备以下几个特点:

①1T内、2T内、3T内、……位移之比为。

②1T末、2T末、3T末、……速度之比为。

③第一个T内、第二个T内、第三个T内、……的位移之比为。

④从静止开始通过连续相等的位移所用时间之比为。

三:

自由落体运动

1、定义:

物体只在作用下从开始下落的运动即叫自由落体运动。

2、特点:

自由落体运动是初速度为零,加速度为g的匀加速直线运动。

3、规律:

初速度为零的匀加速直线运动的规律就是自由落体运动的规律,且a=g。

所以速度规律为;下落高度规律为;推论为。

从运动开始连续相等时间内的位移之比为;连续相等时间内位移的增加量均相等,即△S==恒量。

四:

竖直上抛运动

1、定义:

物体以初速度后,只在作用下所做的运动即竖直上抛运动。

2、规律:

取向上方向为正方向,则有速度规律为;高度规律为。

二者结合消去时间的推论为。

3、几个特征量

①上升的最大高度为。

②上升到最大高度所用时间和从最高点处落回抛出点所用时间相等。

均等于。

五:

追击和相遇问题

追和被追的两物体的(同向运动)是能追上、追不上、两者距离有极值的临界条件。

1、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动)

①两者速度相等时追者位移仍小于被追者位移,则永远追不上,此时二者间有。

②若速度相等时有相同位移,则刚好能追上,也是二者相遇时避免碰撞的临界条件。

③若位移相等时追者速度仍大于被追者的速度,则被追者还能有一次追上追者,二者速度相等时,二者间。

2、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动)

①当两者速度相等时二者间有。

②当两者位移相等时,后者追上前者。

六:

匀速直线运动的位移图象

s-t图象表示运动的随时间变化的规律。

匀速直线运动的图象是一条的直线,速度大小在数值上等于图象的,即v=k。

如图(略,请自己补画)。

七:

直线运动的速度图象

v-t图象表示随时间的变化规律。

它表示的规律是:

给出了v、t的对应关系,即若给定时间t,则可以从图上找出相应的速度v,反之亦然。

1、匀速直线运动的速度图象

①是与横轴时间轴平行的直线。

②从图象上不仅可以找出速度的大小,而且可以利用“面积”求出。

(请自画图)

2、匀变速直线运动的速度图象

①是一条倾斜的直线(可过可不过原点)(请自己补画图象)

②直线斜率的大小等于加速度的大小,即a=tanθ=k。

③当Vo>0时,若直线的斜率大于零,则加速度也大于零,表示物体作运动;若直线的斜率小于零,则加速度也小于零,表示物体作运动。

④图象与坐标轴所围面积(0~t1段)表示该段时间内的位移,位移大小等于梯形的“面积”。

答案:

一:

在相等的时间内位移相等大小方向正比s=vt

二:

时间内速度变化恒量(略)

三:

重力静止(略)

四:

水平抛出重力(略)

五:

速度相等最小距离距离最大最大距离

六:

位移过原点的斜率

七:

运动的速度位移的大小匀加速直线匀减速直线

第五单元牛顿运动定律

一:

牛顿第一定律

1、定律内容:

一切物体总保持状态或状态,直到有外力迫使它改变这种状态为止。

2、牛顿第一定律的理解注意以下几点:

①牛顿第一定律反映了物体时的运动状态。

②牛顿第一定律说明一切物体都有。

③牛顿第一定律说明改变物体运动状态的原因,即力是产生的原因。

3、惯性:

物体保持原来的状态或的性质叫惯性,一切物体都有惯性,是物体的固有属性。

不能被消失,不能被克服,不能被抵消……等等。

是惯性大小的唯一量度,惯性与物体是否受力和受力大小,与物体是否运动及运动速度大小。

惯性的表现形式:

①物体在或时,惯性表现为使物体保持原来的运动状态不变(匀速直线运动或静止)。

②物体受到外力时,惯性表现为运动状态改变的程度。

惯性大,物体运动状态难以改变;惯性小,物体运动状态容易改变。

这里所述实质上是牛顿第二定律所反映的内容。

(外力一定时,a大就是运动状态容易改变,a小则反之。

4、牛顿第一定律是通过得出的,它不能由实际的实验来验证。

二:

牛顿第二定律

1、内容:

物体的加速度跟物体所受的合外力成,跟物体的质量成加速度的方向跟物体所受合外力的方向。

2、公式F=ma在使用时,各量的单位必须使用单位制中的单位。

对力进行正交分解时,加速度同样可以进行正交分解。

3、力的独立性原理:

作用在物体上的每一个力都可以产生一个,物体的加速度等于所有力产生的加速度的矢量和。

4、加速度和合外力是对应关系,加速度是合外力的瞬时作用效果,合外力发生变化,加速度立刻也跟着变化,不需要时间。

三:

牛顿第三定律

1、内容:

两个物体之间的作用力和反作用力总是、、作用在。

2、关于作用力与反作用力,除了“等大、反向、共线”,还要注意以下几点:

①同性质:

一对作用力和反作用力必定是同种的力。

②同存亡:

一对作用力和反作用力必定同时产生、同时消失、同时变化。

③异物性:

分别作用在物体上,因此不能抵消,不能合成,这是作用力与反作用力跟一对平衡力的本质区别。

答案:

一:

匀速直线运动静止不受外力保持匀速直线运动状态或静止状态的性质力加速度匀速直线运动静止质量无关匀速直线运动静止难易程度理想实验

二:

正比反比相同国际加速度瞬时

三:

大小相等方向相反同一直线上性质不同

四:

合外力加速度地球

五:

质量长度时间导出单位单位制

第六单元动力学的两类问题

一:

动力学的两类基本问题

1、已知力求运动,应用求出加速度,如果再知道物体的初始条件,应用运动学公式就可以求出物体的运动情况:

也就是任意时刻的位置和速度,以及运动的轨迹。

2、已知运动求力,应用运动学公式求出物体的加速度,再应用牛顿运动定律推断或求出物体的受力情况。

3、求解以上两类问题的思路,可用下面所列来表示:

物体的受力情况

运动的加速度

物体的运动情况。

分析解决这两类问题的关键:

就抓住受力情况和运动情况之间联系的桥梁……加速度。

二:

应用牛顿定律解题的一般步骤

1、审题,明确题意,清楚物理过程;

2、选取研究对象,可以是一个物体,也可以是几个物体组成的物体组;

3、运用隔离法对研究对象进行受力分析,画出受力的示意图;

4、建立坐标系,一般情况下可选择物体或为下方向;

5、根据牛顿定律、运动学公式、题目给定的条件列方程;

6、解方程,对解进行分析、检验或讨论。

三:

超重和失重

1、超重:

物体对(或对悬挂物的拉力)的情况称为超重。

2、失重:

物体对(或对悬挂物的拉力)的情况称为失重。

3、完全失重:

物体对(或对悬挂物的拉力)的这种状态,叫完全失重。

4、超重和失重产生的条件:

当系统的加速度竖直向上(向上加速运动或向下减速运动)时发生“超”重现象,超出的部分为ma;当系统的加速度竖直向下(向上减速运动或向下加速运动)时发生“失”重现象,失去的部分为ma;当竖直向下的加速度正好等于(自由落体运动或处在绕地球做匀速圆周运动的飞船里,也就是说只要物体具有重力加速度g)时就发生“完全失重”现象。

此时会产生很多有趣的现象。

(请你举出几例来)。

四:

牛顿运动定律的适用范围

牛顿定律只适用于的物体,它不适用于。

答案:

一:

牛顿运动定律

二:

运动方向加速度方向

三:

支持物的压力大于重力支持物的压力小于重力支持物的压力等于零g

四:

宏观低速微观高速运动的粒子

第七单元运动的合成与分解平抛运动

一:

曲线运动

1、物体做曲线运动的条件:

运动物体所受的合力跟它的速度方向不在上。

2、曲线运动的特点:

物体在某一点的速度方向,就是通过这一点的轨迹的方向;物体做曲线运动时,速度方向时刻改变,所以曲线运动一定是,但变速运动不一定是曲线运动。

二:

运动的合成与分解

1、合运动与分运动的关系

①等时性:

合运动与分运动经历的相等,即它们同进开始,同时结束。

②独立性:

一个物体同时参与两个或更多的运动时,其中任何一个运动都按照其自身的规律进行,不会因其它运动的存在而受到影响。

③等效性:

各分运动的叠加与合运动有完全相同的效果。

2、运动的合成、分解的法则

对运动进行合成或分解,实际上就是对描述运动的物理量即速度、加速度和位移进行合成或分解,因它们都是,因此运动的合成和分解应遵循矢量运算法则即定则。

三:

平抛运动及其分解

1、平抛运动:

水平抛出的物体仅在作用下的运动叫做平抛运动。

2、分解方法:

平抛运动可分解为水平方向的运动和竖直方向的。

水平方向运动规律:

速度为;位移为;

竖直方向运动规律:

速度为;位移为;

而任一时刻速度大小为;任一时刻位移大小为。

任一时刻速度、位移方向与水平方向的夹角α、θ可分别表示为:

tanα=Vy/Vx;tanθ=Y/X。

答案:

一:

同一直线切线变速

二:

时间矢量平行四边形

三:

重力匀速直线自由落体运动VoVotgt(略)

第八单元圆周运动

一:

描述圆周运动的物理量

1、线速度:

物理意义:

描述质点沿圆周运动的。

大小:

V=s/t(s是t内通过和弧长)

方向:

质点在圆弧某点的线速度方向沿圆弧该点的方向,与过该点的半径。

2、角速度:

物理意义:

描述质点绕圆心转动的。

大小:

ω=φ/t(rad/s)φ是连接质点和圆心的半径在t时间内转过的角度,单位是弧度。

3、周期T、频率f

做圆周运动的物体运动一周所用的时间叫周期。

做圆周运动物体单位时间内沿圆周绕圆心转过的圈数,叫频率,也叫转速。

4、V、ω、T、f的关系:

(略,请自己补充)

注意:

T、f、ω三个量中任一个确定,其余两个也就确定了。

5、向心加速度

①物理意义:

描述改变的快慢。

②大小:

a=V2/r=ω2r=……

③方向:

总是指向,所以不论a的大小是否变化,它都是个变化的量。

6、向心力:

①作用效果:

产生向心加速度,只改变线速度的,不改变线速度的,因此,向心力对圆周运动的物体功。

②大小:

有多种不同的表达式,(从略)

③方向:

总是沿半径指向圆心,向心力是个变力,圆周运动一定是非匀速性质的运动。

二:

匀速圆周运动

1、特点:

它是不变的运动,因此它的角速度、周期和频率都是。

物体所受的合外力全部提供向心力。

2、质点作匀速圆周运动的条件:

合外力大小,方向始终与速度方向。

三:

离心现象及其应用

1、离心运动:

做匀速圆周运动的物体,在所受合外力突然消失或者不足以提供圆周运动所需的情况下,就做逐渐远离圆心的运动,这种运动就叫离心运动。

2、离心运动的防止和利用:

①利用离心运动制成各种离心机械,如等。

②防止离心运动的危害性,如等。

答案:

一:

快慢切线垂直快慢线速度方向圆心方向大小不做

二:

线速度大小定值不变垂直

三:

向心力离心干燥器“棉花糖”制作机摔干机……火车、汽车转变时速度不能过大各种机器的转速也不能过大……

第九单元万有引力定律人造地球卫星

一:

开普勒行星运动定律

1、开普勒第一定律(又叫轨道定律):

所有的行星分别在大小不同的轨道上围绕太阳运动,太阳处在这些椭圆的一个上。

2、开普勒第二定律(又叫面积定律):

行星与太阳的连线,在相等时间内扫过的面积相等。

3、开普勒第三定律(又叫周期定律):

所有行星轨道

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2