基于秒表的设计与实现毕业设计.docx

上传人:b****8 文档编号:9008364 上传时间:2023-05-16 格式:DOCX 页数:64 大小:3.77MB
下载 相关 举报
基于秒表的设计与实现毕业设计.docx_第1页
第1页 / 共64页
基于秒表的设计与实现毕业设计.docx_第2页
第2页 / 共64页
基于秒表的设计与实现毕业设计.docx_第3页
第3页 / 共64页
基于秒表的设计与实现毕业设计.docx_第4页
第4页 / 共64页
基于秒表的设计与实现毕业设计.docx_第5页
第5页 / 共64页
基于秒表的设计与实现毕业设计.docx_第6页
第6页 / 共64页
基于秒表的设计与实现毕业设计.docx_第7页
第7页 / 共64页
基于秒表的设计与实现毕业设计.docx_第8页
第8页 / 共64页
基于秒表的设计与实现毕业设计.docx_第9页
第9页 / 共64页
基于秒表的设计与实现毕业设计.docx_第10页
第10页 / 共64页
基于秒表的设计与实现毕业设计.docx_第11页
第11页 / 共64页
基于秒表的设计与实现毕业设计.docx_第12页
第12页 / 共64页
基于秒表的设计与实现毕业设计.docx_第13页
第13页 / 共64页
基于秒表的设计与实现毕业设计.docx_第14页
第14页 / 共64页
基于秒表的设计与实现毕业设计.docx_第15页
第15页 / 共64页
基于秒表的设计与实现毕业设计.docx_第16页
第16页 / 共64页
基于秒表的设计与实现毕业设计.docx_第17页
第17页 / 共64页
基于秒表的设计与实现毕业设计.docx_第18页
第18页 / 共64页
基于秒表的设计与实现毕业设计.docx_第19页
第19页 / 共64页
基于秒表的设计与实现毕业设计.docx_第20页
第20页 / 共64页
亲,该文档总共64页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于秒表的设计与实现毕业设计.docx

《基于秒表的设计与实现毕业设计.docx》由会员分享,可在线阅读,更多相关《基于秒表的设计与实现毕业设计.docx(64页珍藏版)》请在冰点文库上搜索。

基于秒表的设计与实现毕业设计.docx

基于秒表的设计与实现毕业设计

 

毕业设计(论文)

 

题目:

数字电子秒表的设计与实现

 

摘要

近年来随着科技的飞速发展,单片机的应用正在不断的走向深入。

本文阐述了基于单片机的数字电子秒表设计。

本设计主要特点是计时精度达到0.001s,解决了传统的由于计时精度不够造成的误差和不公平性,是各种体育竞赛的必备设备之一。

另外硬件部分设置了查看按键,可以对秒表上一次计时时间进行保存,供使用者查询。

用PROTEUS强大的功能来实现,简单切易于观察,在仿真中就可以观察到实际的工作状态。

关键字:

单片机;数字电子秒表;仿真

 

Abstract

Withtherapiddevelopmentofscienceandtechnologyinrecentyears,SCMapplicationsareconstant-depthmanner.Inthispaper,basedonsinglechipdesignofdigitalelectronicstopwatch.Themaincharacteristicsofthisdesigntimingaccuracyof0.001s,tosolvethetraditionalresultofalackaccuracyduetotimingerrorsandunfair,andisavarietyofsportscompetitions,oneoftheessentialequipment.InadditionthehardwarepartofthesetViewbuttononthestopwatchcanbethelasttimetosavetimeforuserqueries.

Thedesignofthemulti-functionstopwatchsystemusesSTC89C52microcontrollerasthecentraldevice,anduseitstimer/countertimingandthecountprinciples,combinedwithdisplaycircuit,LEDdigitaltube,aswellastheexternalinterruptcircuittodesignatimer.Thesoftwareandhardwaretogetherorganically,allowingthesystemtoachievetwoLEDdisplayshowsthetimefrom0to99.999seconds,Timingaccuracyof0.001seconds,Beabletocorrectlytimeatthesametimetorecordatime,andthenexttimeafterthelasttimethetimetosearch.automaticallyaddedasecondinwhichsoftwaresystemsusingassemblylanguageprogramming,includingthedisplayprogram,timing,interruptservice,externalinterruptserviceroutine,delayprocedures,keyconsumershakingprocedures,andWAVEinthecommissioning,operation,hardwaresystemusestoachievePROTEUSpowerful,simpleandeasytoobservethecutinthesimulationcanbeobservedontheactualworkingcondition.

Keyword:

LEDdisplay;High-precisionstopwatch;STC89C52

 

绪论

秒表计时器是电器制造,工业自动化控制、国防、实验室及科研单位理想的计时仪器,它广泛应用于各种继电器、电磁开关,控制器、延时器、定时器等的时间测试。

奥运男子百米飞人大战中,牙买加飞人博尔特以9秒69的成绩夺得冠军。

而博尔特冲过终点的瞬间,荧屏显示其成绩为9秒68。

相差的这个0.01秒,系由电子计时系统确认。

奥运会男子100米蝶泳决赛上,美国选手菲尔普斯以50秒58的成绩惊险夺冠,距离“八金梦想”仅一步之遥。

塞尔维亚选手查维奇以50.59秒获得银牌,只比菲尔普斯慢0.01秒。

这种细微的差距,即使是现场大屏幕用经典超慢镜头回放,也无法分辨。

2004年8月28日15点15分,中国选手孟关良/杨文军在雅典奥运会男子500米划艇决赛中,以1分40秒278的成绩获得中国在雅典奥运会的第28金。

这是中国皮划艇项目的第一枚奥运金牌,也是中国水上项目在历届奥运会上所获得的第一枚金牌。

孟关良/杨文军的成绩比获得银牌的古巴选手只快了0.072秒,以至于两人在夺冠之后还不敢相信。

自首届现代奥运会在希腊雅典举办以来,奥运计时技术一直在不断地向前发展。

一百多年过去了,首届现代奥运会上计时所用的跑表如今换成了一系列高科技计时装置,如高速数码摄像机、电子触摸垫、红外光束、无线应答器等等。

鉴于当今计时技术的快速发展,即便千分之一秒(为眨眼的40倍)的毫微差距,也决定着冠军的归属。

在现在的体育竞技比赛中,随着运动员的水平不断提高,差距也在不断缩小。

有些运动对时间精度的要求也越来越高,有时比赛冠亚军之间的差距只有几毫秒,因此就需要高精度的秒表来记录成绩。

有关计时钟表的发展历史,大致可以分为三个演变阶段。

一、从大型钟向小型钟演变。

二、从小型钟向袋表过渡。

三、从袋表向腕表发展。

每一阶段的发展都是和当时的技术发明分不开的。

1088年,当时我国宋朝的科学家苏颂和韩工廉等人制造了水运仪象台,它是把浑仪、浑象和机械计时器组合起来的装置。

它以水力作为动力来源,具有科学的擒纵机构,虽然几十年后毁于战乱,但它在世界钟表史上具有极其重要的意义。

1656年,荷兰的科学家惠更斯应用伽利略的理论设计了钟摆,第二年,在他的指导下年轻钟匠S.Coster制造成功了第一个摆钟。

1675年,他又用游丝取代了原始的钟摆,这样就形成了以发条为动力、以游丝为调速机构的小型钟,同时也为制造便于携带的袋表提供了条件。

18世纪期间发明了各种各样的擒纵机构,为袋表的进一步产生与发展奠定了基础。

英国人GeorgeGraham在1726年完善了工字轮擒纵机构,它和之前发明的垂直放置的机轴擒纵机构不同,所以使得袋表机芯相对变薄。

20世纪初,尤其是第一次世界大战的爆发,袋表已经不能适应作战军人的需要,腕表的生产成为大势所趋。

许多新的设计和技术也被应用在腕表上,成为真正意义上的带在手腕上的计时工具。

紧接着的二战使腕表的生产量大幅度增加,价格也随之下降,使普通大众也可以拥有它。

腕表的年代到来了!

1998年:

建立超冷铯原子钟,比微微秒又要精确10万倍。

从我国水运仪像台的发明到现在各国都在研制的原子钟这几百年的钟表演变过程中,我们可以看到,各个不同时期的科学家和钟表工匠用他们的聪明的智慧和不断的实践融合成了一座时间的隧道,同时也为我们勾勒了一条钟表文化和科技发展的轨迹。

本设计利用AT89C52单片机的定时器/计数器定时和记数的原理,使其能精确计时。

利用中断系统使其能实现开始暂停的功能。

P0口输出段码数据,P2.0-P2.4口作列扫描输出,P1.1、P3.2、P3.3、P2.5分别接四个按钮开关,分别实现开始、暂停、清零和查看上次时间的功能。

显示电路由五位共阴极数码管组成。

初始状态下计时器显示00.000,当按下开始键时,外部中断INT1向CPU发出中断请求,CPU转去执行外部中断1服务程序,即开启定时器T0。

计时采用定时器T0中断完成,定时溢出中断周期为1ms,当一处中断后向CPU发出溢出中断请求,每发出一次中断请求就对毫秒计数单元进行加一,达到10次就对十毫秒位进行加一,依次类推,直到99.999秒重新复位。

在计时过程中,只要按下暂停键,外部中断INT0向CPU发出中断请求,CPU转去执行外部中断0服务程序,即关闭定时器T0,调用显示程序,实现暂停功能,同时将此次计时时间存入寄存区。

然后对P1.1进行扫描。

当P1.1按下时就跳转回主程序。

等待下一次计时开始。

在按下暂停键时,将此时的计时时间存入中间缓存区,当再次按下开始键时,则讲中间缓存区的数据转入最终缓存区。

秒表停止后对查看键P2.5进行扫描,P2.5按下为低电平时,调用最终缓存区的数据进行显示,即显示上一次计时成绩。

当P2.5位高电平时,调用显示缓存区的数据进行显示,即显示当此计时的成绩。

根据以上设计思路从而实现数字电子秒表的计时和查看上一次计时时间的功能。

本文主要内容包括三部分:

第一部分介绍硬件部分设计思路及方案;第二部分介绍了软件部分的设计思路和设计;最后一部分则是整个系统的安装与调试过程。

1硬件设计

1.1总体方案的设计

数字电子秒表具有显示直观、读取方便、精度高等优点,在计时中广泛使用。

本设计用单片机组成数字电子秒表,力求结构简单、精度高为目标。

设计中包括硬件电路的设计和系统程序的设计。

其硬件电路主要有主控制器,计时与显示电路和回零、启动和停表电路等。

主控制器采用单片机AT89C52,显示电路采用共阴极LED数码管显示计时时间。

本设计利用AT89C52单片机的定时器/计数器定时和记数的原理,使其能精确计时。

利用中断系统使其能实现开始暂停的功能。

P0口输出段码数据,P2.0-P2.4口作列扫描输出,P1.1、P3.2、P3.3、P2.5口接四个按钮开关,分别实现开始、暂停、清零和查看上次计时时间功能。

电路原理图设计最基本的要求是正确性,其次是布局合理,最后在正确性和布局合理的前提下力求美观。

硬件电路图按照图1.1进行设计。

图1.1数字秒表硬件电路基本原理图

根据要求知道秒表设计主要实现的功能是计时和显示。

因此设置了四个按键和五位数码管显示时间,三个按键分别是开始,停止、复位和查看上次计时时间按键。

利用这四个建来实现秒表的全部功能,而五位数码管则能显示最多99.999秒的计时。

本设计中,数码管显示的数据存放在内存单元79H-7DH中。

其中79H存放毫秒位数据,7AH存放十毫秒位数据,7BH存放百毫秒位数据,7CH存放秒位数据,7DH存放十秒位数据,每一地址单元内均为十进制BCD码。

由于采用软件动态扫描实现数据显示功能,显示用十进制BCD码数据的对应段码存放在ROM表中。

显示时,先取出79H-7dH某一地址中的数据,然后查得对应的显示用段码,并从P0口输出,P2口将对应的数码管选中供电,就能显示该地址单元的数据值。

最终缓存区则设置为59H-5DH,数据存放规则和79H-7DH一样。

分别对应存放毫秒位至十秒位数据。

与79H-7DH存储区不一样的是:

59H-5DH存储的内容为数字秒表上一次计时显示的时间。

而79H-7DH为当前计时时间存储区。

计时采用定时器T0中断完成,定时溢出中断周期为1ms,当一处中断后向CPU发出溢出中断请求,每发出一次中断请求就对毫秒计数单元进行加一,达到10次就对十毫秒位进行加一,依次类推,直到99.999秒重新复位。

再看按键的处理。

这四个键可以采用中断的方法,也可以采用扫描的方法来识别。

复位键和查看主要功能在于数值复位和查询上次计时时间,对于时间的要求不是很严格。

而开始和停止键则是用于对时间的锁定,需要比较准确的控制。

因此可以对复位和查看按键采取扫描的方式。

而对开始和停止键采用外部中断的方式。

设计中包括硬件电路的设计和系统程序的设计。

其硬件电路主要有主控制器,显示电路和回零、启动、查看、停表电路等。

主控制器采用单片机AT89C52,显示电路采用共阴极LED数码管显示计时时间,四个按键均采用触点式按键。

1.2单片机的选择

本课题在选取单片机时,充分借鉴了许多成形产品使用单片机的经验,并根据自己的实际情况,选择了ATMEL公司的AT89S51。

ATMEL公司的89系列单片机以其卓越的性能、完善的兼容性、快捷便利的电擦写操作,低廉的价格、超强的加密功能,完全替代87C51/62和8751/52,低电压、低电源、低功耗,有DIP、PLCC、QFP封装,有民用型、工业级、汽车级、军品级等多种温度等级,是当今世界上性能最好、价格最低、最受欢迎的八位单片机[3]。

AT89C52P为40脚双列直插封装的8位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

单片机的外部结构

AT89S52单片机采用40引脚的双列直插封装方式。

图1.2为引脚排列图,40条引脚说明如下:

主电源引脚Vss和Vcc

①Vss接地

②Vcc正常操作时为+5伏电源

外接晶振引脚XTAL1和XTAL2

①XTAL1内部振荡电路反相放大器的输入端,是外接晶体的一个引脚。

当采用外部振荡器时,此引脚接地。

②XTAL2内部振荡电路反相放大器的输出端。

是外接晶体的另一端。

当采用外部振荡器时,此引脚接外部振荡源。

图1.2单片机引脚图

控制或与其它电源复用引脚RST/VPD,ALE/

/Vpp

①RST/VPD当振荡器运行时,在此引脚上出现两个机器周期的高电平(由低到高跳变),将使单片机复位在Vcc掉电期间,此引脚可接上备用电源,由VPD向内部提供备用电源,以保持内部RAM中的数据。

②ALE/

正常操作时为ALE功能(允许地址锁存)提供把地址的低字节锁存到外部锁存器,ALE引脚以不变的频率(振荡器频率的1/6)周期性地发出正脉冲信号。

因此,它可用作对外输出的时钟,或用于定时目的。

但要注意,每当访问外部数据存储器时,将跳过一个ALE脉冲,ALE端可以驱动(吸收或输出电流)八个LSTTL电路。

对于EPROM型单片机,在EPROM编程期间,此引脚接收编程脉冲(

功能)

外部程序存储器读选通信号输出端,在从外部程序存储取指令(或数据)期间,

在每个机器周期内两次有效。

同样可以驱动八LSTTL输入。

/Vpp、

/Vpp为内部程序存储器和外部程序存储器选择端。

/Vpp为高电平时,访问内部程序存储器,当

/Vpp为低电平时,则访问外部程序存储器。

对于EPROM型单片机,在EPROM编程期间,此引脚上加21伏EPROM编程电源(Vpp)。

输入/输出引脚P0.0-P0.7,P1.0-P1.7,P2.0-P2.7,P3.0-P3.7。

①P0口(P0.0-P0.7)是一个8位漏极开路型双向I/O口,在访问外部存储器时,它是分时传送的低字节地址和数据总线,P0口能以吸收电流的方式驱动八个LSTTL负载。

②P1口(P1.0-P1.7)是一个带有内部提升电阻的8位准双向I/O口。

能驱动(吸收或输出电流)四个LSTTL负载。

③P2口(P2.0-P2.7)是一个带有内部提升电阻的8位准双向I/O口,在访问外部存储器时,它输出高8位地址。

P2口可以驱动(吸收或输出电流)四个LSTTL负载。

④P3口(P3.0-P3.7)是一个带有内部提升电阻的8位准双向I/O口。

能驱动(吸收或输出电流)四个LSTTL负载[6]。

AT89C52具有以下标准功能:

8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

另外,AT89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

CPU是单片机的核心部件。

它由运算器和控制器等部件组成[2]。

(1)运算器

运算器的功能是进行算术运算和逻辑运算。

可以对半字节(4位)、单字节等数据进行操作。

例如能完成加、减、乘、除、加1、减1、BCD码十进制调整、比较等算术运算和与、或、异或、求补、循环等逻辑操作,操作结果的状态信息送至状态寄存器。

89C52运算器还包含有一个布尔处理器,用来处理位操作。

它是以进位标志位C为累加器的,可执行置位、复位、取反、等于1转移、等于0转移、等于1转移且清0以及进位标志位与其他可寻址的位之间进行数据传送等位操作,也能使进位标志位与其他可移位寻址的位之间进行逻辑与、或操作[5]。

(2)程序计数器PC

程序计数器PC用来存放即将要执行的指令地址,共16位,可对64K程序存储器直接寻址。

执行指令时,PC内容的低8位经P0口输出,高8位经P2口输出。

(3)令寄存器

指令寄存器中存放指令代码。

CPU执行指令时,由程序存储器中读取的指令代码送入指令寄存器,经译码后由定时与控制电路发出相应的控制信号,完成指令功能。

本设计采用ATMEL的AT89C52微处理器,主要基于以下几个因素:

①AT89C52为51内核,仿真调试的软硬件资源丰富。

②性价比高,货源充足。

③功耗低,功能强,灵活性高。

④DIP40封装,体积小,便于产品小型化。

⑤为EEPROM程序存储介质,1000次以上擦写周期,便于编程调试。

⑥工作电压范围宽:

2.7V-6V,便于交直流供电。

1.3显示电路的选择与设计

对于数字显示电路,通常采用液晶显示或数码管显示。

对于一般的段式液晶屏,需要专门的驱动电路,而且液晶显示作为一种被动显示,可视性差,不适合远距离观看;对于具有驱动电路和单片机接口的液晶显示模块(字符或点阵),一般多采用并行接口,对单片机的接口要求较高,占用资源多;另外,AT89S52单片机本身无专门的液晶驱动接口。

而数码管作为一种主动显示器件,具有亮度高、响应速度快、防潮防湿性能好、温度特性极性、价格便宜、易于购买等优点,而且有远距离视觉效果,很适合夜间或是远距离操作。

因此,本设计的显示电路采用7段数码管作为显示介质。

数码管显示可以分为静态显示和动态显示两种。

由于本设计需要采用五位数码管显示时间,如果静态显示则占用的口线多,硬件电路复杂。

所以采用动态显示。

图1.3显示电路基本原理图

动态显示是一位一位地轮流点亮各位数码管,这种逐位点亮显示器的方式称为位扫描。

通常各位数码管的段选线相应并联在一起,由一个8位的I/O口控制;各位的公共阴极位选线由另外的I/O口线控制。

动态方式显示时,各数码管分时轮流选通,要使其稳定显示必须采用扫描方式,即在某一时刻只选通一位数码管,并送出相应的段码,在另一时刻选通另一位数码管,并送出相应的段码,依此规律循环,即可使各位数码管显示将要显示的字符,虽然这些字符是在不同的时刻分别显示,但由于人眼存在视觉暂留效应,只要每位显示间隔足够短就可以给人同时显示的感觉。

数码显示管分为共阳数码管和共阴数码管两种

共阳极数码管的8个发光二极管的阳极(二极管正端)连接在一起,如图1.4(b),通常,公共阳极接高电平(一般接电源),其它管脚接段驱动电路输出端。

当某段驱动电路的输出端为低电平时,则该端所连接的字段导通并点亮,根据发光字段的不同组合可显示出各种数字或字符。

此时,要求段驱动电路能吸收额定的段导通电流,还需根据外接电源及额定段导通电流来确定相应的限流电阻。

共阴极数码管的8个发光二极管的阴极(二极管负端)连接在一起,如图(c),通常,公共阴极接低电平(一般接地),其它管脚接段驱动电路输出端,当某段驱动电路的输出端为高电平时,则该端所连接的字段导通并点亮,根据发光字段的不同组合可显示出各种数字或字符。

此时,要求段驱动电路能提供额定的段导通电流,还需根据外接电源及额定段导通电流来确定相应的限流电阻。

图1.4(a)数码管引脚图(b)共阳极内部结构图(c)共阴极内部结构图

本设计采用共阴极数码显示管做显示电路,由于采用的是共阴的数码显示管,所以只要数码管的a、b、c、d、e、f、g、h引脚为高电平,那么其对应的二极管就会发光,使数码显示管显示0~9的编码见表1.1。

表1.1共阴极数码显示管字型代码

字型

共阴极代码

字型

共阴极代码

0

3FH

5

6DH

1

06H

6

7DH

2

5BH

7

07H

3

4FH

8

7FH

4

66H

9

6FH

动态显示电路由显示块、字形码驱动模块、字位驱动模块三部分组成。

如图1.3所示为本系统的5位LED动态显示器接口电路。

图中,5个数码管的8段段选线分别与外接上拉电阻的单片机P0口对应相连,而5个数码管的位控制端则和NPN型三极管的集电极相连接。

单片机的P2.0~P2.4口则分别对应数码显示管的最低位到最高位,P2.0~P2.4口分别和五个NPN型三极管的基极相连,做三极管导通的控制端,而NPN型三极管选用9013型三极管。

根据9013的资料显示:

其耐压值为40V,最大功率为0.65W,最大电流为0.5A,电气性能完全满足本设计的要求。

另外数码管显示是采用动态显示,所以对三极管的开关频率有一定的要求。

根据电子秒表的设计计算可知动态显示的频率最高为3KHz,而9013的导通频率为150MHz,完全能满足本设计的要求,所以最终选取9013三极管最为位控制开关。

由于数码管是有P0口来驱动,它内部没有上拉电阻,作为输出口时驱动能力比较弱,不能点亮数码显示管,因此P0口必须接上拉电阻来提高驱动能力。

另外一位共阴数码管的驱动电流一般为20mA左右,如果电流太大容易造成数码管损坏,所以也需要根据电源的电压值来确定上拉电阻的大小。

如果电阻过小,势必会形成灌电流过大,造成单片机IO的损坏,如果电阻过大,那么对拉电流没有太大的影响。

电源供电电压为5V,当上拉电阻选用220Ω电阻时灌电流为22mA。

不会损坏单片机的I/O口,同时也可以为数码显示管起到限制电流的保护作用。

1.4按键电路的选择与设计

本设计中有四个按键,分别实现开始、暂停、复位和查看功能。

这三个键可以采用中断的方法,也可以采用查询的方法来识别。

对于复位键和查看键,主要功能在于数值复位和对上次计时时间的查看,对于时间的要求不是很严格,而开始和暂停键主要用于时间的锁定,需要比较准确的控制。

因此可以考虑,对复位键和查看键采用查询的方式,而对于开始和暂停键采用外部中断。

四个按键均采用低电平有效,具体电路连接图如图1.5所示。

当按键没有按下时,单片机的I/O口直接连接电源,因此需要接上拉电阻来进行限流,本设计中选取阻值为2kΩ的电阻作为上拉电阻,根据计算可知此时的灌电流为2.5mA,查看AT89C52的资料得知次电流在安全范围内,符合安全设计要求。

图1.5按键电路

按键电路中由于采用了外部中断,所以需要用到P3口的第二功能。

P3口引脚的第二功能如表1.2

表1.2P3口引脚第二功能表

P3口引脚

特殊功能

P3.0

RXD(串行输入口)

P3.1

TXD(串行输出

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2