音频功率放大器毕业设计总结.docx

上传人:b****0 文档编号:9011099 上传时间:2023-05-16 格式:DOCX 页数:19 大小:224.15KB
下载 相关 举报
音频功率放大器毕业设计总结.docx_第1页
第1页 / 共19页
音频功率放大器毕业设计总结.docx_第2页
第2页 / 共19页
音频功率放大器毕业设计总结.docx_第3页
第3页 / 共19页
音频功率放大器毕业设计总结.docx_第4页
第4页 / 共19页
音频功率放大器毕业设计总结.docx_第5页
第5页 / 共19页
音频功率放大器毕业设计总结.docx_第6页
第6页 / 共19页
音频功率放大器毕业设计总结.docx_第7页
第7页 / 共19页
音频功率放大器毕业设计总结.docx_第8页
第8页 / 共19页
音频功率放大器毕业设计总结.docx_第9页
第9页 / 共19页
音频功率放大器毕业设计总结.docx_第10页
第10页 / 共19页
音频功率放大器毕业设计总结.docx_第11页
第11页 / 共19页
音频功率放大器毕业设计总结.docx_第12页
第12页 / 共19页
音频功率放大器毕业设计总结.docx_第13页
第13页 / 共19页
音频功率放大器毕业设计总结.docx_第14页
第14页 / 共19页
音频功率放大器毕业设计总结.docx_第15页
第15页 / 共19页
音频功率放大器毕业设计总结.docx_第16页
第16页 / 共19页
音频功率放大器毕业设计总结.docx_第17页
第17页 / 共19页
音频功率放大器毕业设计总结.docx_第18页
第18页 / 共19页
音频功率放大器毕业设计总结.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

音频功率放大器毕业设计总结.docx

《音频功率放大器毕业设计总结.docx》由会员分享,可在线阅读,更多相关《音频功率放大器毕业设计总结.docx(19页珍藏版)》请在冰点文库上搜索。

音频功率放大器毕业设计总结.docx

音频功率放大器毕业设计总结

音频功率放大器设计

摘要:

这款功放采用了典型的OCL功放电路,为全互补对称式纯甲类DC结构,功放的每一级放大均工作于甲类状态。

输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J74(可用K389、J109孪生对管对换)对管和K214、J77中功率MOS管,功率输出级为2SC5200和2SA1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。

综合运用了我们前面所学的知识。

设计完全符合要求。

关键字:

沃尔漫电路,TIM,共源-共基电路,共射-共基电路

1.引言

在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。

所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

这款功放采用了典型的OCL功放电路,为全互补对称式纯甲类DC结构,功放的每一级放大均工作于甲类状态。

输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J74(可用K389、J109孪生对管对换)对管和K214、J77中功率MOS管,功率输出级为2SC5200和2SA1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。

综合运用了我们前面所学的知识。

设计完全符合要求。

2.放大器性能指标

2.1灵敏度

对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率,在喇叭正前方1米远处能产生多少分贝的声压值.

2.2阻尼系数

负载阻抗与放大器输出阻抗之比。

使用负反的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。

2.3反馈

也称为回授,一种将输出信号的一部分或全部回送到放大器的输入端以改变电路放大倍数的技术。

负反馈导致放大倍数减小的反馈称为负反馈。

负反馈虽然使放大倍数蒙受损失,但能够有效地拓宽频响,减小失真,因此应用极为广泛。

正反馈使放大倍数增大的反馈称为正反馈。

正反馈的作用与负反馈刚好相反,因此使用时应当小心谨慎。

2.4动态范围

信号最强的部分与最微弱部分之间的电平差.对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力.

2.5响应

频率响应简称频响,衡量一件器材对高,中,低各频段信号均匀再现的能力.对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。

2.6信噪比(S/N)

又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。

设备的信噪比越高表明它产生的杂音越少。

2.7屏蔽

在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。

2.8阻抗匹配

一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。

对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

3.音频功率放大器的设计

功率放大器不仅仅是消费产品(音响)中不可缺少的设备,还广泛应用于控制系统和测量系统中。

3.1设计要求

1.输出功率:

20W。

2.负载阻抗:

8Ω。

3.通频带Δfs:

为20HZ–20KHZ。

4.音调控制要求:

1KHZ(0dB),10KHZ(±12dB),100HZ(±12dB)

5.灵敏度:

话筒输入:

5mV。

线路输入:

0.775V。

3.2方案设计过程

3.2.1总体方案拟定

甲类功放的主要优点就是电路简单易行,非线性失真小,适用于小功率的线性音频放大器,现在甲类功放主要用在高档功放产品中。

而乙类功放与甲类功放最主要的不同点就是静态电流小,因此无信号时消耗功率小,可获得较高的效率;但是,乙类功放在工作时,由于两只晶体管交替导通与截止,因而,在两管输出信号波形的衔接处,会产生交越失真;而且功放管在从反偏到零偏再转为正偏转换时,随着信号频率升高,输出信号就会在时间上延迟,出现所谓的开关转换失真。

因此,在实际Hi-Fi高保真放音系统中,一般不采用乙类功放,而采用线性失真小的甲类功放或甲乙类功放。

甲乙类功放是通过改变偏置的方法来减少交越失真,它将甲类功放的高保真度与乙类功放折衷,从而在一定程度上解决了上述效率高与失真大之间的矛盾。

而且甲乙类功放的效率可达到78.5%,故本次设计采用甲乙类功放。

通过对设计要求和设计方案的分析,本课题觉得采用LM1875作为功率放大器。

图1系统组成框图

确定各级的增益分配

放大倍数Vs.dB数0dB:

一般将信号电平(0dB)即0.775V作为衡量放大器灵敏度的参考标准。

5mV的dB数为:

因为采用的集成芯片LM1875,其输出功率为20W,则负载上的电压:

又话筒输入为5mV,则整个电路的增益为20lg(13/0.005)=68dB。

考虑到音调级必要的衰减,增益为-2dB左右。

所以取整个电路的增益为70dB。

则各级的增益如下:

*功放级:

26dB(厂家给定的)

*音调控制级:

-2dB。

*前置放大级:

44dB。

3.2.2单元电路的设计

(1)前置放大级

①电路形式的选择

由于信号远输入的信号幅度较小。

不足以推动以后的功放电路。

因此要用电压放大电路对信号输入的音频信号电压进行放大,对于信号源,其负载约为47KΩ,所以选用电压串联负反馈方式的同相比例放大器,它可以使输入电阻增大,输出电阻减小,且输入输出电压同相。

又因为前置放大级的增益为44dB,即158倍,取160倍,前置放大级电路采用二级,第一级与第二级采用电容耦合方式,总的电压放大倍数为Auf=160,设计中选用Auf1=1,Auf2=160。

其中第一级实际上是一个电压跟随器,它提高了带负载的能力。

图2前置放大器电路图

电路中二极管D1作用是:

当线路输入是0.775V时,D1导通,此时LF353

(2)也为一个电压跟随器,信号不经过放大直接到音调控制级的输入端。

当输入为5mV时,不足以让二极管导通,此时LF353

(2)为放大器,信号将放大160倍后到音调控制级的输入端。

②集成运放的选择

因为Auf2=160,根据通频带20HZ–20KHZ,其上线频率为20KHZ,则集成运放的放大倍数带宽积应满足下列关系:

GB≥Auf2fh=180*20KHZ=3.2MHZ

从运放的资料手册中可查出LF353的单位放大倍数带宽GB=4MHZ,满足要求。

③各元件的参数选择和计算

电路中电容C11是用作噪声去耦合的,可以用小体积大容量的钽电容或普通电解电容,一般选为10μF,R11可选用较大的电阻,取1MΩ,电阻R12取10K,LF353

(2)构成的是放大倍数为160的电压放大电路,同相交流放大电路的平衡电阻可尽量选得大一些,一般为10K以上,这样有利于提高放大电路的输入电阻,由于输入电阻为47K,故选RP2的阻值为47K,R21取1K,耦合电容C12为10μF。

由Auf2=1+R23/R22及R21=R23//R22,Auf2=180可得R21=R22=1K,R23=160K。

C21,C22,C23,C24,主要用于电源旁路滤波,一般C21,C23用电解电容,其值为220μF,C22,C24用普通的电容,一般取值为22μF。

LF353的电源为±15V的直流稳压电源。

(2)音调控制级

音调控制器主要是控制,调节音响放大器的幅频特性,他只对低频与高频的增益进行提升与衰减,中音频的增益保持0dB不变。

因此,音调控制器的电路可以由低通滤波器和高通滤波器构成。

由运算放大器构成的音调控制器,电路调节简单,元器件少,因此,我们选用这种电路形式。

图3音调控制级电路图

图中,电位器RP3用来调节音量的大小,即为音量控制电路。

设电容C31=C32>>C33,在中,底音频区,C33可视为开路,在中,高音频区,C31,C32可视为短路。

工作状态及元件参数计算:

第一:

低频时的情况:

低频提升与衰减,电路图如下图4(a)和图4(b)所示:

图4低频提升与衰减电路

增益为:

式中:

ω1=1/(RP31*C32),ω2=(RP31+R32)/(RP31*R32*C32)

当f

在f=fL1时,因为fL2=10fL1,故可得

AV1=(RP31+R32)/

R31

此时,电压增益AV1相对于AVL下降了3dB。

在f=fL1时,可得AV1=[(RP31+R32)/R31]*(

/10)=0.14AVL

此时,电压增益AV2相对于AVL下降了17dB。

同理可得低频衰减的相应表达式。

第二:

高频提升与衰减:

高频等效电路如图5所示:

图5高频等效电路

电阻关系式为:

Ra=R31+R31+(R31R31/R32)

Rb=R34+R32+(R34R32/R31)

Rc=R31+R32+(R32R31/R34)

若取R31=R32=R34,则上式为:

Ra=Rb=Rc=3R32=3R34

高频提升与衰减的等效电路如下图6所示:

图6高频提升与衰减电路

增益函数表达式为:

式中,

时,

视为开路,电压增益AV0=1(0dB)。

在f=fH1时

AV3=

AV0

此时电压增益AV3相对于AV0高3dB。

在f=fH2时,

AV4=

AV0

此时电压增益AV4相对于AV0提高了17dB。

时,

视为端路,此时电压增益

AVH=(Ra+R33)∕R33

同理可以得图示电路的相应表达式,其增益相对于中频增益为衰减量。

又已知

,由计算式得:

,则;

,则

AVL=(RP31+R32)/R31≧20dB

其中,R31,R32,RP31不能取得太大,否则运放漂移电流的影响不可忽视。

但也不能太小,否则流过它们的电流将超过运放的输出能力。

通常取几千欧姆至几百千欧姆。

现取RP31=470KΩ,则

AVL=(RP31+R32)/R31=11(20.8dB)

 

取标称值0.01

,即

取R34=R31=R32=47K,则

取标称值

,取标称值470PF

级间耦合电容

(3)功率放大级

芯片选用LM1875,而一个LM1875的输出功率最大只能达到20W,已能满足本课题的设计要求,故本设计采用单片LM1875。

如果要把输出功率提高到50W,可选择BTL电路,按照如下方法进行设计:

BTL电路它是在OTL电路和OCL电路的基础上发展起来的新型功率放大电路,其工作原理如下:

图7双端推挽放大电路

BTL电路属于双端推挽放大电路,它由四管组成电桥电路,图中对角管同时导通,互为推挽。

负载上输出正负半周波形。

BTL电路可以采用单电源供电,且不需要输出电容,这不仅克服了输出电容的影响,也免除了两组电压对称性的苛刻要求。

BTL的两组对角管轮流导通,互为推挽,在每个信号半周内能利用全部电源电压(除去饱和压降),同单端电路相比,在相同电源电压和相同负载时,前者的输出功率为后者的4倍;换言之,如果负载和输出功率相同,BTL电路对所用的晶体管的耐压要求可比单端电路降低一半,因此,它有易于输出大功率而不损坏输出管的优点。

目前常见的BTL电路大多是由两个独立的单端推挽电路拼合而成(多见于集成电路),其信号分相是先将信号送入第一个单端电路,放大后经电阻分压再送到第二个单端电路,这样不仅会把单端电路的缺陷带入放大器,而且还会将第一个单端电路的畸变信号经过第二个单端电路放大而进一步加重,因此其特性必然不好。

由BTL的工作原理及特点可知,要满足输出功率为50W的要求,可用两个LM1875组成BTL电路,要想获得好的输出特性,关键是要获得BTL电路所需的两个大小相等,相位相反的音频信号。

通过查询资料(3),可知,可以用一个倒相电路来提供此信号。

如下图所示:

图8倒相电路

图中VT组成的单管放大电路没有电压放大作用,它采用分压式偏置供给VT关静态工作电流,从集电极和发射极输出的音频信号大小分别为IcRc和IeRe,由于Ic≈Ie,Rc=Re,所以两路的信号大小相等而极性相反,可将它们分别通过电容耦合到BTL电路的两个同乡相输入端。

则功率放大电路如下图所示:

图9BTL功率放大电路

3.3元件参数的计算与选取

 

3.3.1反馈网络电阻值的选取

LM1875的增益为26dB,即有:

所以有:

,通常取

左右,则

3.3.2隔直电容

应满足在下限频率上(

)的容抗远小于R1,取

电源旁路电容:

4、LM1875的简介

4.1LM1875的参数简介

 LM1875采用TO-220封装结构,形如一只中功率管,体积小巧,外围电路简单,且输出功率较大。

该集成电路内部设有过载过热及感性负载反向电势安全工作保护。

LM1875主要参数:

    电压范围:

16~60V

    静态电流:

50mA

    输出功率:

25W

    谐波失真:

<0.02%,当f=1kHz,RL=8Ω,P0=20W时

    额定增益:

26dB,当f=1kHz时

    工作电压:

±25V

    转换速率:

18V/μS

LM1875极限参数:

电源电压(Vs)60V

输入电压(Vin)-VEE-VccV

工作结温(Tj)+150℃

存储结温(Tstg)-65-+150℃

4.2LM1875的工作原理:

LM1875功放板由一个高低音分别控制的衰减式音调控制电路和LM1875放大电路以及电源供电电路三大部分组成,音调部分采用的是高低音分别控制的衰减式音调电路,其中的R02,R03,C02,C01,W02组成低音控制电路;C03,C04,W03组成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级音调电路的影响。

放大电路主要采用LM1875,由1875,R08,R09,C06等组成,电路的放大倍数由R08与R09的比值决定,C06用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C07,R10的作用是防止放大器产生低频自激。

本放大器的负载阻抗为4→16Ω。

为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采用2个2200UF/25V电解电容并联,正负电源共用4个2200UF/25V的电容,两个104的独石电容是高频滤波电容,有利于放大器的音质。

4.3LM1875的电路特点

LM1875功率较TDA2030及TDA2009都为大,电压范围为16~60V。

不失真功率为20W(THD=0.08%),THD=1%时,功率可达40W(人耳对THD<10%一下的失真没什么明显的感觉),保护功能完善。

笔者是一个不错的选择。

其接法同TDA2030相似,也有单双电源两种接法。

LM1875是美国国家半导体器件公司生产的音频功放电路,采用V型5脚单列直插式塑料封装结构。

如图1所示,该集成电路在±25V电源电压RL=4Ω可获得20W的输出功率,在±30V电源8Ω负载获得30W的功率,内置有多种保护电路。

广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。

 电路特点:

(1)单列5脚直插塑料封装,仅5只引脚。

(2)开环增益可达90dB。

(3)极低的失真,1kHz,20W时失真仅为0.015%。

(4)AC和DC短路保护电路。

(5)超温保护电路。

(6)峰值电流高达4A

 (7)极宽的工作电压范围(16-60V)。

(8)内置输出保护二极管。

(9)外接元件非常少,TO-220封装。

(10)输出功率大,Po=20W(RL=4Ω)。

5、电路设计

5.1典型应用电路

音频功率放大器的典型应用电路分为两种:

一种为单电源供电,另一种为双电源供电。

两种典型应用电路电路图如下:

图10单电源接法

图11双电源接法

LM1875单电源供电与双电源供电的基本工作原理相同,不同之处在于:

单电源供电时,采用R1、R2分压,取1/2VCC作为偏置电压经过R3加到1脚,使输出电压以1/2VCC为基准上下变化,因此可以获得最大的动态范围。

但在本课题中,我们希望能对音频放大器的音量和音频进行调节,即得到更理想更直观的设计,在此次设计中采用双电源供电的方法。

5.2双电源音频功率放大器原理图

综合以上讨论,利用protel99软件画出双电源音频功率放大器原理图:

图12双电源音频功率放大器原理图

5.3双电源音频功率放大器PCB图

在电路原理图的基础上,绘制PCB图如下:

图13双电源音频功率放大器PCB图

 

参考文献

[1]曾广兴,《现代音响技术应用》,广东科技出版社,1997年3月。

[2]张平,《关于音频功率放大器的应用》,《安阳大学学报》,2002年02期。

[3]吴振平,《实用声电技术》,中国铁道出版社,1984年11月。

[4]龚伟,《音频放大器控制方式综述》,重庆大学报,2003年02期。

[5]黎明,《电子质量》,2002年02期。

[6]华成英,《模拟电子技术基础》[M],北京高等教育出版社,2001。

[7]姚福安,《音频功率放大器设计》,山东大学学报,2003年06期。

[8]牟小令,《高效率音频功率放大器》,西南师范大学学报,2003年01期。

[9]马建国,《电子系统设计》,高等教育出版社。

[11]曲荣,《收音机电平指示电路锦集》

[12]方佩敏,《音频功率放大器》,《电子世界》,2003年08期。

 

AudioPowerAmplifierDesign

WuHaiYang

(SchoolofPhysicsandElectricalEngineeringofAnqingNormalCollege,Anqing246011)

AbstractThisamplifierusesatypicalOCLpoweramplifier,thewholecomplementarysymmetricalPureClassADCstructure,eachlevelofmagnificationoftheamplifierisworkingintheCPIstate.InputstageandvoltageamplifierstagediffuseWalllinearcircuitbetter,andpoormanagementinchargerespectivelyadoptthefamousK170,J74(freeK389,J109twinonthetubeontheexchange)onthetubeandK214,J77inthepowerMOSpipe,poweroutputlevelfor2SC5200and2SA1943Toshibatubeparalleloutputpower,strongpower,thespeakersaredrivenimpedance2Ωeaselyandeffortlessly.Itusestheknowledgethatwe'velearnedcomprehensivly.Designfullymeetstherequirements.

KeywordsWallMancircuit,TIM,common-source-commonbasecircuit,common-emitter-commonbasecircuit

  书中横卧着整个过去的灵魂——卡莱尔

  

  人的影响短暂而微弱,书的影响则广泛而深远——普希金

  

  人离开了书,如同离开空气一样不能生活——科洛廖夫

  

  书不仅是生活,而且是现在、过去和未来文化生活的源泉——库法耶夫

  

  书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者———史美尔斯

  

  书籍便是这种改造灵魂的工具。

人类所需要的,是富有启发性的养料。

而阅读,则正是这种养料———雨果

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2