DS18B20温度传感器课程设计.docx

上传人:b****0 文档编号:9433406 上传时间:2023-05-19 格式:DOCX 页数:26 大小:747.89KB
下载 相关 举报
DS18B20温度传感器课程设计.docx_第1页
第1页 / 共26页
DS18B20温度传感器课程设计.docx_第2页
第2页 / 共26页
DS18B20温度传感器课程设计.docx_第3页
第3页 / 共26页
DS18B20温度传感器课程设计.docx_第4页
第4页 / 共26页
DS18B20温度传感器课程设计.docx_第5页
第5页 / 共26页
DS18B20温度传感器课程设计.docx_第6页
第6页 / 共26页
DS18B20温度传感器课程设计.docx_第7页
第7页 / 共26页
DS18B20温度传感器课程设计.docx_第8页
第8页 / 共26页
DS18B20温度传感器课程设计.docx_第9页
第9页 / 共26页
DS18B20温度传感器课程设计.docx_第10页
第10页 / 共26页
DS18B20温度传感器课程设计.docx_第11页
第11页 / 共26页
DS18B20温度传感器课程设计.docx_第12页
第12页 / 共26页
DS18B20温度传感器课程设计.docx_第13页
第13页 / 共26页
DS18B20温度传感器课程设计.docx_第14页
第14页 / 共26页
DS18B20温度传感器课程设计.docx_第15页
第15页 / 共26页
DS18B20温度传感器课程设计.docx_第16页
第16页 / 共26页
DS18B20温度传感器课程设计.docx_第17页
第17页 / 共26页
DS18B20温度传感器课程设计.docx_第18页
第18页 / 共26页
DS18B20温度传感器课程设计.docx_第19页
第19页 / 共26页
DS18B20温度传感器课程设计.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

DS18B20温度传感器课程设计.docx

《DS18B20温度传感器课程设计.docx》由会员分享,可在线阅读,更多相关《DS18B20温度传感器课程设计.docx(26页珍藏版)》请在冰点文库上搜索。

DS18B20温度传感器课程设计.docx

DS18B20温度传感器课程设计

摘 要

随着社会的进步和工业技术的发展,温度因素在社会生活各个方面已不容忽视。

由于许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。

在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。

在单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术条件下,我们可以基于89S51单片机,利用液晶显示器件以及DS18B20温度传感器等器件,通过温度传感器在单片机下的硬件连接,软件编程即可设计DS18B20温度传感器系统。

该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

关键词:

单片机AT89C51、DS18B20温度传感器、液晶显示LCD1602

二、内容

课程设计题目

基于DS18B20的温度传感器

课题的背景

在人类的生活环境中,温度扮演着极其重要的角色,都无时无刻不在与温度打交道。

自18世纪工业革命以来,工业发展与是否掌握温度有着紧密的联系。

在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80的工业部门都不得不考虑着温度的因素。

温度对于工业如此重要,由此推进了温度传感器的发展。

1.1传感器三个发展阶段:

一是模拟集成温度传感器。

该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。

此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等特点,适合远距离测温、控温,不需要进行非线性校准,且外围电路简单。

它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135等。

二是模拟集成温度控制器。

模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。

某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处。

但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别。

三是智能温度传感器。

智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。

有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。

智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,当然,其智能化程度也取决于软件的开发水平。

1.2温度传感器的发展趋势

进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

1.3传感器在温控系统中的应用

目前市场主要存在单点和多点两种温度测量仪表。

对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围大,而得到了普遍的应用。

此种产品测温范围大都在-200℃~800℃之间,分辨率12位,最小分辨温度在0.001~0.01之间。

自带LED显示模块,显示4位到16位不等。

有的仪表还具有存储功能,可存储几百到几千组数据。

该类仪表可很好的满足单个用户单点测量的需要。

多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵。

针对目前市场的现状,本设计提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。

2、课程设计目的

通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。

3、设计任务和要求

以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。

温度显示采用LCD1602显示,两位整数,一位小数。

4、正文

(一)、方案选择与论证

根据设计任务的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下一些不同的设计方案:

(1)、温度传感模块

方案一:

采用热敏电阻,热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的,也不能满足测量范围。

在温度测量系统中,也常采用单片温度传感器,比如AD590,LM35等。

但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使测温系统的硬件结构较复杂。

另外,这种测温系统难以实现多点测温,也要用到复杂的算法,一定程度上也增加了软件实现的难度。

方案二:

采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。

便于单片机处理及控制,节省硬件电路。

且该芯片的物理化学性很稳定,此元件线形性能好,在0—100摄氏度时,最大线形偏差小于1摄氏度。

DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度装置,它直接输出温度的数字信号到微控制器。

每只DS18B20具有一个独有的不可修改的64位序列号,根据序列号可访问不同的器件。

这样一条总线上可挂接多个DS18B20传感器,实现多点温度测量,轻松的组建传感网络。

综上分析,我们选用第二种方案。

温度传感模块仿真图

(2)、显示模块

方案一:

采用8位段数码管,将单片机得到的数据通过数码管显示出来。

该方案简单易行,但所需的元件较多,且不容易进行操作,可读性差,一旦设定后很难再加入其他的功能,显示格式受限制,且大耗电量大,不宜用电池给系统供电。

方案二:

采用液晶显示器件,液晶显示平稳、省电、美观,更容易实现题目要求,对后续的园艺通兼容性高,只需将软件作修改即可,可操作性强,也易于读数,采用RT1602两行十六个字符的显示,能同时显示其它的信息如日期、时间、星期、温度。

综上分析,我们采用了第二个方案

显示模块仿真图

三、系统的具体设计与实现

(1)、系统的总体设计方案

采用AT89S52单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送到液晶显示器LCD1602显示。

按照系统设计功能的要求,确定系统由3个模块组成:

主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如图下所示。

(2)、硬件电路设计

a、单片机控制模块

该模块由AT89C51单片机组成在设计方面,AT89C51的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP座方便与外围设备连接。

当AT89C51芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。

b、温度传感器模块

DS18B20相关资料

1、DS18B20原理与分析DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。

与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。

因而使用DS18B20可使系统结构更趋简单,可靠性更高。

他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

以下是DS18B20的特点:

(1)独特的单线接口方式:

DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

(3)可用数据线供电,电压范围:

+3.0~+5.5V。

(4)测温范围:

-55-+125℃。

固有测温分辨率为0.5℃。

(5)通过编程可实现9-12位的数字读数方式。

(6)用户可自设定非易失性的报警上下限值。

(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。

(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

2、DS18B20的测温原理DS18B20的测温原理上图所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。

另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作必须按协议进行。

操作协议为:

初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

DS18B20工作过程一般遵循以下协议:

初始化——ROM操作命令——存储器操作命令——处理数据①初始化单总线上的所有处理均从初始化序列开始。

初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。

存在脉冲让总线控制器知道DS1820在总线上且已准备好操作。

②ROM操作命令一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。

所有ROM操作命令均为8位长。

这些命令如下:

ReadROM(读ROM)[33h]

此命令允许总线主机读DS18B20的8位产品系列编码,唯一的48位序列号,以及8位的CRC。

此命令只能在总线上仅有一个DS18B20的情况下可以使用。

如果总线上存在多于一个的从属器件,那么当所有从片企图同时发送时将发生数据冲突的现象(漏极开路会产生线与的结果)。

MatchROM(符合ROM)[55h]此命令后继以64位的ROM数据序列,允许总线主机对多点总线上特定的DS1寻址。

只有与64位ROM序列严格相符的DS18B20才能对后继的存贮器操作命令作出响应。

所有与64位ROM序列不符的从片将等待复位脉冲。

此命令在总线上有单个或多个器件的情况下均可使用。

SkipROM(跳过ROM)[CCh]

在单点总线系统中,此命令通过允许总线主机不提供64位ROM编码而访问存储器操作来节省时间。

如果在总线上存在多于一个的从属器件而且在SkipROM命令之后发出读命令,那么由于多个从片同时发送数据,会在总线上发生数据冲突(漏极开路下拉会产生线与的效果)。

SearchROM(搜索ROM)[F0h]

当系统开始工作时,总线主机可能不知道单线总线上的器件个数或者不知道其64位ROM编码。

搜索ROM命令允许总线控制器用排除法识别总线上的所有从机的64位编码。

AlarmSearch(告警搜索)[ECh]

此命令的流程与搜索ROM命令相同。

但是,仅在最近一次温度测量出现告警的情况下,DS18B20才对此命令作出响应。

告警的条件定义为温度高于TH或低于TL。

只要DS18B20一上电,告警条件就保持在设置状态,直到另一次温度测量显示出非告警值或者改变TH或TL的设置,使得测量值再一次位于允许的范围之内。

贮存在EEPROM内的触发器值用于告警。

③存储器操作命令

WriteScratchpad(写暂存存储器)[4Eh]

这个命令向DS18B20的暂存器中写入数据,开始位置在地址2。

接下来写入的两个字节将被存到暂存器中的地址位置2和3。

可以在任何时刻发出复位命令来中止写入。

ReadScratchpad(读暂存存储器)[BEh]

这个命令读取暂存器的内容。

读取将从字节0开始,一直进行下去,直到第9(字节8,CRC)字节读完。

如果不想读完所有字节,控制器可以在任何时间发出复位命令来中止读取。

CopyScratchpad(复制暂存存储器)[48h]

这条命令把暂存器的内容拷贝到DS18B20的E2存储器里,即把温度报警触发字节存入非易失性存储器里。

如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又正在忙于把暂存器拷贝到E2存储器,DS18B20就会输出一个“0”,如果拷贝结束的话,DS18B20则输出“1”。

如果使用寄生电源,总线控制器必须在这条命令发出后立即起动强上拉并最少保持10ms。

ConvertT(温度变换)[44h]

这条命令启动一次温度转换而无需其他数据。

温度转换命令被执行,而后DS18B20保持等待状态。

如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又忙于做时间转换的话,DS18B20将在总线上输出“0”,若温度转换完成,则输出“1”。

如果使用寄生电源,总线控制器必须在发出这条命令后立即起动强上拉,并保持500ms。

RecallE2(重新调整E2)[B8h]

这条命令把贮存在E2中温度触发器的值重新调至暂存存储器。

这种重新调出的操作在对DS18B20上电时也自动发生,因此只要器件一上电,暂存存储器内就有了有效的数据。

在这条命令发出之后,对于所发出的第一个读数据时间片,器件会输出温度转换忙的标识:

“0”=忙,“1”=准备就绪。

ReadPowerSupply(读电源)[B4h]

对于在此命令发送至DS18B20之后所发出的第一读数据的时间片,器件都会给出其电源方式的信号:

“0”=寄生电源供电,“1”=外部电源供电。

④处理数据

DS18B20的高速暂存存储器由9个字节组成,其分配如图3所示。

当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。

单片机可通过单线接口读到该数据,读取时低位在前,高位在后。

DS18B20温度数据表

上表是DS18B20温度采集转化后得到的12位数据,存储在DS18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于或等于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

温度转换计算方法举例:

例如当DS18B20采集到+125℃的实际温度后,输出为07D0H,则:

实际温度=07D0H╳0.0625=2000╳0.0625=1250C。

例如当DS18B20采集到-55℃的实际温度后,输出为FC90H,则应先将11位数据位取反加1得370H(符号位不变,也不作为计算),则:

实际温度=370H╳0.0625=880╳0.0625=550C。

2、显示模块LCD1602资料(这里主要介绍下指令说明及时序)

1602液晶模块内部的控制器共有11条控制指令,如表10-14所示:

序号

指令

RS

R/W

D7

D6

D5

D4

D3

D2

D1

D0

1

清显示

0

0

0

0

0

0

0

0

0

1

2

光标返回

0

0

0

0

0

0

0

0

1

*

3

置输入模式

0

0

0

0

0

0

0

1

I/D

S

4

显示开/关控制

0

0

0

0

0

0

1

D

C

B

5

光标或字符移位

0

0

0

0

0

1

S/C

R/L

*

*

6

置功能

0

0

0

0

1

DL

N

F

*

*

7

置字符发生存贮器地址

0

0

0

1

字符发生存贮器地址

8

置数据存贮器地址

0

0

1

显示数据存贮器地址

9

读忙标志或地址

0

1

BF

计数器地址

10

写数到CGRAM或DDRAM)

1

0

要写的数据内容

11

从CGRAM或DDRAM读数

1

1

读出的数据内容

表10-14:

控制命令表

1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。

(说明:

1为高电平、0为低电平)

指令1:

清显示,指令码01H,光标复位到地址00H位置。

指令2:

光标复位,光标返回到地址00H。

指令3:

光标和显示模式设置I/D:

光标移动方向,高电平右移,低电平左移S:

屏幕上所有文字是否左移或者右移。

高电平表示有效,低电平则无效。

指令4:

显示开关控制。

D:

控制整体显示的开与关,高电平表示开显示,低电平表示关显示C:

控制光标的开与关,高电平表示有光标,低电平表示无光标B:

控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5:

光标或显示移位S/C:

高电平时移动显示的文字,低电平时移动光标。

指令6:

功能设置命令DL:

高电平时为4位总线,低电平时为8位总线N:

低电平时为单行显示,高电平时双行显示F:

低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。

指令7:

字符发生器RAM地址设置。

指令8:

DDRAM地址设置。

指令9:

读忙信号和光标地址BF:

为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令10:

写数据。

指令11:

读数据。

与HD44780相兼容的芯片时序表如下:

读状态

输入

RS=L,R/W=H,E=H

输出

D0—D7=状态字

写指令

输入

RS=L,R/W=L,D0—D7=指令码,E=高脉冲

输出

读数据

输入

RS=H,R/W=H,E=H

输出

D0—D7=数据

写数据

输入

RS=H,R/W=L,D0—D7=数据,E=高脉冲

输出

表10-15:

基本操作时序表

读写操作时序如图10-55和10-56所示:

图10-55读操作时序

图10-56写操作时序

四、软件设计

系统程序主要包括主程序、读出温度子程序、温度转换子程序、计算温度子程序、显示等等。

1、主程序

主要功能是完成DS18B20的初始化工作,并进行读温度,将温度转化成为压缩BCD码并在显示器上显示传感器所测得的实际温度。

2、读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需要进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如下图所示。

3、温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辩率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。

流程图图如下

4、计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定。

流程图如下:

五、完整程序如下:

#include

#include

 

typedefunsignedcharuint8;

#defineuintunsignedint

#defineucharunsignedchar

sbitDQ=P3^3;//定义DQ引脚为P3.3

ucharcodeBw[10]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39};//百位编码

ucharcodeXsw[16]={0x30,0x31,0x31,0x32,0x33,0x33,0x34,0x34,0x35,0x36,0x36,0x37,0x38,0x38,0x39,0x39};//小数位编码

sbitRS=P2^0;

sbitRW=P2^1;

sbitEN=P2^2;

sbitBUSY=P0^7;

ucharwendu;

uchartemp_g,temp_d;

unsignedcharcodeword1[]={"Temperature:

"};

voiddelay(uintxms)

{

uinti,j;

for(i=xms;i>0;--i)

for(j=110;j>0;--j);

}

voidDelayus(intt)//在11.059MHz的晶振条件下调用本函数需要24μs,然后每次计数需16μs

{

ints;

for(s=0;s

}

等待繁忙标志

voidwait(void)

{

P0=0xFF;

do

{

RS=0;

RW=1;

EN=0;

EN=1;

}while(BUSY==1);

EN=0;

}

写数据

voidw_dat(uint8dat)

{

wait();

EN=0;

P0=dat;

RS=1;

RW=0;

EN=1;

EN=0;

}

写命令

voidw_cmd(uint8cmd)

{

wait();

EN=0;

P0=cmd;

RS=0;

RW=0;

EN=1;

EN=0;

}

发送字符串到LCD

voidw_string(uint8addr_start,uint8*p)

{

w_cmd(addr_start);

while(*p!

='\0')

{

w_dat(*p++);

}

}

初始化1602

voidInit_LCD1602(void)

{

w_cmd(0x38);//16*2显示,5*7点阵,8位数据接口

w_cmd(0x0c);//显示器开、光标开、光标允许闪烁

w_cmd(0x06);//文字不动,光标自动右移

w_cmd(0x01);//清屏

}

ucharReset()//完成单总线的复位操作。

{

uchard;

DQ=0;

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2