结构成型塑料成型外文翻译文献.docx

上传人:b****0 文档编号:9440091 上传时间:2023-05-19 格式:DOCX 页数:19 大小:568.24KB
下载 相关 举报
结构成型塑料成型外文翻译文献.docx_第1页
第1页 / 共19页
结构成型塑料成型外文翻译文献.docx_第2页
第2页 / 共19页
结构成型塑料成型外文翻译文献.docx_第3页
第3页 / 共19页
结构成型塑料成型外文翻译文献.docx_第4页
第4页 / 共19页
结构成型塑料成型外文翻译文献.docx_第5页
第5页 / 共19页
结构成型塑料成型外文翻译文献.docx_第6页
第6页 / 共19页
结构成型塑料成型外文翻译文献.docx_第7页
第7页 / 共19页
结构成型塑料成型外文翻译文献.docx_第8页
第8页 / 共19页
结构成型塑料成型外文翻译文献.docx_第9页
第9页 / 共19页
结构成型塑料成型外文翻译文献.docx_第10页
第10页 / 共19页
结构成型塑料成型外文翻译文献.docx_第11页
第11页 / 共19页
结构成型塑料成型外文翻译文献.docx_第12页
第12页 / 共19页
结构成型塑料成型外文翻译文献.docx_第13页
第13页 / 共19页
结构成型塑料成型外文翻译文献.docx_第14页
第14页 / 共19页
结构成型塑料成型外文翻译文献.docx_第15页
第15页 / 共19页
结构成型塑料成型外文翻译文献.docx_第16页
第16页 / 共19页
结构成型塑料成型外文翻译文献.docx_第17页
第17页 / 共19页
结构成型塑料成型外文翻译文献.docx_第18页
第18页 / 共19页
结构成型塑料成型外文翻译文献.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

结构成型塑料成型外文翻译文献.docx

《结构成型塑料成型外文翻译文献.docx》由会员分享,可在线阅读,更多相关《结构成型塑料成型外文翻译文献.docx(19页珍藏版)》请在冰点文库上搜索。

结构成型塑料成型外文翻译文献.docx

结构成型塑料成型外文翻译文献

 

结构成型塑料成型外文翻译文献

 

(文档含中英文对照即英文原文和中文翻译)

 

译文:

在先进的结构发泡成型中获得一个有高间隙率方法的研究

摘要:

结构性泡沫提供比它们同类更多的优点,包括更大的几何准确性、最终产品的表面上没有凹痕,较低的重量(由此延伸的需要以较低的材料),和更高的刚度与重量的比率。

用传统的结构实现一个合适的空隙率在结构泡沫发泡成型方法已经有一些成功;这些方法允许小的控制和产量大的孔洞及非均匀的单元结构。

本文章报告使用一种先进的结构发泡成型机以一个高的空隙率,达到一个统一的单元结构。

我们研究以下方面:

注塑工艺参数流量、吹气的理论容量,和熔体温度。

在内部的剖面压力不同的加工条件下的模腔内研究了塑料的成核和生长。

通过优化工艺条件,所有我们取得了一个统一的单元结构和非常高的空隙率(40%)。

1简介:

结构成型是塑料成型所使用的一种传统的注塑机。

一种用物理吹剂(PBA),另一种用化工吹剂(CBA),或者两者都被选用,在这个过程中,产生一种单元(泡沫)结构。

这种结构性泡沫成型的优点有缺乏凹痕的最后一个部分的表面上,一个减了体重,低背压,更快捷的生产周期时间,具有相当高转速.因为这独特的优势,低压预塑式结构发泡成型技术中得到了广泛的应用制造大产品,需要几何精度。

实现一个适当的空隙率在结构泡沫使用传统的注塑机并没有证明是非常成功的,但由于这些成型方法允许小的控制和产量大的孔洞及非均匀的细胞结构。

获得一种统一的单元结构具有高空隙率、机器必须能先具有一张完全溶解和均匀的气体混合物的没有任何气体的口袋。

如果一个统一的单一气体解决方案不是达到前发泡,将很难获得一种统一的细胞结构发泡制品。

在决策中,为满足这一需求,要求一种先进的结构发泡成型技术与连续聚合物发展,该技术有利于均匀的离散和溶解气体的聚合物熔体在成型过程中,从而保护的产生对难溶气体大口袋。

在一个我们展示了以前的工作,用一个定制的可行性小注塑系统组成的一个微型注射单位和发泡挤出机,基于这种新技术。

然而,除了改善硬件技术,它也是必要开发适当的处理策略以控制细胞生长成核和模具型腔内。

在此背景下,当前一些探讨处理策略需要获得一个统一的高间隙先进的结构发泡成型工艺单元结构。

我们调查了下列重要参数:

吹剂含量、注入流量、熔体温度。

使用我们的结构性泡沫获得先进的成型技术进行表征方面的空隙率、细胞密度、细胞三维地形尺寸分布;x射线用来描写的三维结构泡沫细胞的组织形态。

内部的压力剖面下模具型腔也被记录在案,为了更好的理解不同加工条件下细胞的形核、长大的行为。

2研究背景:

近年来,泡沫塑料注射成型的优势已经引发了改进结构发泡成型技术。

Trexel公司开发了一种微往复式注射成型技术的基出上,对预塑式注塑机进行了大量的工作。

以进一步改善质模板在微孔发泡过程中使用了微结构成型。

Turng,苏达权等,,研究了改变工艺条件的影响上,特别是在当前国内外微孔结构的例子,混合成型用结构.何振平,高庆宇报道的创造与微孔发泡细胞的结构和表面质量良好使用了共聚物聚碳酸脂(PC).尹恩惠,孙俐,在当前国内外微孔形貌控制的聚丙烯(PP)等课程教学中存在的报道说,有一个高庆宇甲级的表面和高空隙率可以达到通过使用一个透气通道.发泡等,综述了最近高庆宇的微孔复合材料的新型高分子材料和钢筋与矿物填料及自然光纤。

Shimbo报道,在典型的结构成型工艺另一种微孔发泡过程中注塑机,使用了一个预塑式注塑机被用来塑化螺柱塞聚合物,是用来注入聚合物进入模具腔,另一个替代方案泡沫注射成型工艺是在发达的德国亚琛的一个系统,在这个系统中,气体注射在一个特别设计的喷油嘴,它安装在塑化单元之间的,可对喷嘴关闭的常规射出成型机。

此外,它达到更好的分散性之气,静态混合元素被安装之间的气体喷油嘴和关闭喷嘴。

这项技术后来为商业化专利。

在2006年,有人提出了一个结构,经过在先进的高庆宇发泡成型技术的基础上,预塑式注射机传统的结构发泡技术这样就提高了注入气体会完全溶解在聚合物。

由一个强化技术的齿轮油泵及附加蓄能器使聚合物/气体混合物形成一步连续不断的成型操作。

换句话说,更新的设计完全解耦,气体溶解步骤的注塑操作使用一个主驱动泵。

这一先进的结构发泡的细节技术概述在下一节。

3先进的成型结构

先进的成型机。

经过先进的发泡成型机器.这种技术促进统一的气体色散和完整(或实质)溶解在聚合物熔体,尽管是稳定成型工艺。

但是它认识到连续成型行为不可避免地引起不一致的气体充填、这种结构使得流动但是聚合物熔体和天然气是连续的(即不停止在注射时期)。

 

图1

 

图2

 

图3-4

图1显示的原理图结构,经过先进的泡沫成型机在发达的Toronto大学的这台机器包含了一主驱动泵(例如:

一个齿轮泵)和额外的蓄电池、附于挤压桶和之间的关断阀。

(一个位于前关闭阀门柱塞,另一种是位于喷嘴处。

)此设计完全减弱气体溶解步骤的注塑操作使用和维护主动驱动泵齿轮泵的稳态气体溶解作用。

在注塑业务,橡胶压片机压出的螺杆转动,而生成聚合物/气体混合物收集在加时赛的蓄电池。

后两者混合遭受到注塑和收集到的,它移动通过柱塞机制进入到下一个周期。

这项技术确保了压力,在挤压桶内保持相对稳定,达到一致的气体充填是这样一个统一的聚合物/气体混合物是取得了不管压力波动柱塞。

这项技术已经成为商业专利。

均匀分布和完全溶解吹塑过程保持一致的气体充填的聚合物和替代或近乎溶解所有的气体在聚合物熔体,螺杆必须保持相对稳定的自转时,在螺杆的优点是恒转速移动一倍。

首先,一致的气体充填是容易实现:

由于压力波动的挤压桶内减至最低。

第二,维持一个高压力下确保解散的注入气体进入聚合物熔体。

一个统一的聚合物/气体混合物,其中的气体已经完全(或实质上)溶解,为改善制品塑料结构。

就需要有一个常数溶气/重量配比提供理论依据。

表1

 

图5

图6

图7.瓦斯含量的影响和注入流量等泡沫的形态

一个齿轮油泵是一种最基本的组成部分,因为它提供了一份改进工艺恒体积流率对聚合物/气体混合物;泵上的压力,从而控制的挤压,并允许一个一致的连续性桶重量比为粘性聚合物熔体,压力在挤压酒桶保持相对稳定,因为这种积极的位移的齿轮泵。

由于气体流量压力取决于在桶显著,恒气流量可以通过保持固定的压力,在挤压桶。

聚合物/气体混合物能够控制的变转速的齿轮泵。

通过独立控制的流动速率两种气体与聚合物/气体混合物,这种聚合物流量也可以被控制住。

因此,既有一致的重量比”,并获得统一流动聚合物/气体混合物可以很容易地实现与齿轮泵。

这些优势不能被轻易的做到了,用一个关闭或止回阀。

背后的基本原理与装备新模型具有额外的蓄能器来源于需要适应这个混合物在每个周期的注射期间使螺杆可以匀速旋转和煤气可以不断的注入melt.4不断旋转螺杆是一种重要的差异,从以前所有的结构发泡成型技术是基于低压塑料注塑系统。

一旦是压力相对稳定的挤出桶,它会变得更容易控制的流量,注入气体的高分子,和气体即可更为均匀散布到融化

图8.细胞密度测量的地点A-C(0.3硅油%氮气)。

当一个一致的气体聚合物量比,实现了注入氮气,有一个非常低的溶解性,可完全溶化,如果一个足够高的压力保持在这两种挤压桶和累加器。

“足够高的压力”意味着熔体压力远高于溶解性的压力进行了给定的气体的注入聚合物熔体。

此外,保持了足够高的压力后的油已经完全溶解,防止形成第二阶段在聚合物熔体在积累阶段。

因为溶解性的压力进行了瓦斯含量要求产生一个fine-celled结构[例如,为0.1-1.0%N2期的140-1400psi的高密度聚乙烯(HDPE)在200°C]17号低比压极限存在的低压预塑式结构性泡沫成型机(最大许用压力≈3000psi),一个足够高的压力就可以很容易地保持先进的结构发泡成型机。

4结果和讨论:

加工参数的影响程度,充模。

图4显示了吹剂的影响(氮气)和温度对泡沫融化程度充满了模具。

卒中是用于不同的注入不同数目的N2为了达到不同的空泡内馏份:

60,50,和40毫米,和0.5,0.1,0.3硅油%氮气,分别。

这些注入中风占期末无效的分数占17%,31%和45%,分别。

很清楚,氮气含量和喷射流量中起到了至关重要的作用,在确定充填型腔的程度。

充填型腔的程度随氮气含量和注入流量而增加。

因为低压结构发泡成型使用一种近程注射,在这个过程中,依靠泡沫膨胀以填充模子腔。

一个更高的氮气含量增加的程度,从而提高了泡沫膨胀模具,也是值得注意是由高细胞密度增加氮气含量是另一个推动力的创作中较大的空系率。

注射充模流动速率也受到了影响。

因为在何种程度上的不同,熔体冷却流量、更高注射注塑流动速度下降冷却速率在注射过程中,这导致熔融粘度较低,同时,也增加了聚合物的力学性能。

此外,因为熔体温度比较高,在高注入流量、时间较长的细胞形核、长大。

应该指出的是,晶核的成核和生长在模具型腔熔体温度降低会了停一下下面的结晶温度。

5总结

在这项研究中,实验对各种材料的低压注塑成型加工条件进行了调查,注射流量和模腔平均压力在注塑中起到了至关重要的作用,它也发现氮气的数量对形成致密的单元结构很重要。

当氮气含量太低(即,0.1硅油%),空腔压降成核率会下降并导致制品的密度过低。

另一方面,当氮气含量足够高(例如,0.3硅油%及以上),会导致制品密度过高。

我们还发现,没有一个合适的阻力,我们不可能获得一个统一的制品结构和较高的制品精度。

通过优化所有的压力加工条件,我们就能实现一个统一的细单元结构和较高的制品精度(接近40%)。

参考文献

(1)Hornsby,P.R.ThermoplasticsStructuralFoams:

Part2PropertiesandApplication.Mater.Eng.1982,3,443.

(2)Ahmadi,A.A.;Hornsby,P.R.MouldingandCharacterizationStudieswithPolypropyleneStructuralFoam,Part1:

Structure-PropertyInterrelationships.Plast.RubberProcess.Appl.1985,5,35.

(3)Hikita,K.DevelopmentofWeightReductionTechnologyforDoorTripUsingFoamedPP.JSAEReV.2002,23,239.

(4)Park,C.B.;Xu,X.ApparatusandMethodforAdvancedStructuralFoamMolding.U.S.PatentApplication11/219,309,filedSep2,2005;

 

StrategiestoAchieveaUniformCellStructurewithaHighVoidFractioninAdvancedStructuralFoamMolding

ABSTRACT:

Structuralfoamsoffernumerousadvantagesovertheirsolidcounterparts,includinggreatergeometricalaccuracy,theabsenceofsinkmarksonthefinalproduct’ssurface,lowerweight(and,byextension,theneedforlessmaterial),andahigherstiffness-to-weightratio.Thepossibilityofachievingasuitablevoidfractioninstructuralfoamsusingconventionalstructuralfoammoldingmethods,however,hasbeenoflimitedsuccess;thesemethodsallowforlittlecontrolandtypicallyyieldlargevoidsandanonuniformcellstructure.Thisarticlereportsonouruseofanadvancedstructuralfoammoldingmachinetoachieveauniformcellstructurewithahighvoidfraction.Westudiedthefollowingprocessingparameters:

injectionflowrate,blowingagentcontent,andmelttemperature.Thepressureprofileinsidethemoldcavityundervariousprocessingconditionswasalsoinvestigatedtoelucidatecellnucleationandgrowthbehaviors.Byoptimizingallprocessingconditions,weachievedauniformcellstructureandaveryhighvoidfraction(over40%).

Introduction

Structuralfoamsareplasticfoamsmanufacturedusing,conventionalpreplasticating-typeinjection-moldingmachines.Aphysicalblowingagent(PBA),chemicalblowingagent,(CBA),orbothareemployedintheprocesstoproduceacellular(foam)structure.Theadvantagesofstructuralfoammolding,includetheabsenceofsinkmarksonthefinalpart’ssurface,areducedweight,alowbackpressure,afasterproductioncycle,time,andahighstiffness-to-weightratio.1-3Becauseofthisuniquesetofadvantages,alow-pressurepreplasticating-type,structuralfoammoldingtechnologyhasbeenusedwidelyformanufacturinglargeproductsthatrequiregeometricaccuracy.Achievingasuitablevoidfractioninstructuralfoamsusingconventionalstructuralfoammoldinghasnotproventobesuccessful,however,asthesemoldingmethodsallowforlittlecontrolandyieldlargevoidsandanonuniformcellstructure.Toobtainauniformcellstructurewithahighvoidfraction,themachinemustbecapableoffirstproducingacompletelydissolvedanduniformgas/polymermixturewithoutanygaspockets.Ifauniformsingle-phasepolymer/gassolutionisnotachievedbeforefoaming,itwouldbeverydifficulttoattainauniformcellstructureinthefinalfoamproducts.Tomeetthisrequirement,anadvancedstructuralfoammoldingtechnologywithcontinuouspolymer/gasmixtureformationwasdevelopedattheUniversityofToronto.4,5Thistechnologyfacilitatestheuniformdispersionanddissolutionofgasinthepolymermeltduringthestructuralfoammoldingprocess,therebysafeguardingagainstthecreationoflarge,undissolvedgaspockets.Inapreviouswork,5wedemonstratedthefeasibilityofusingacustomizedsmallinjectionmoldingsystemconsistingofaminiinjectionunitandafoamingextruderbasedonthisnewtechnology.However,inadditiontoimprovedhardwaretechnology,itisalsorequiredtodevelopappropriateprocessingstrategiestocontrolcellnucleationandgrowthinsidethemoldcavity.Inthiscontext,thecurrentarticlediscussessomeprocessingstrategiesrequiredtoobtainauniformcellstructurewithahighvoidfractioninanadvancedstructuralfoammoldingprocess.Weinvestigatedthefollowingcriticalparameters:

blowingagentcontent,injectionflowrate,andmelttemperature.Thestructuralfoamsobtainedusingouradvancedmoldingtechnologywerecharacterizedintermsofvoidfraction,celldensity,andcellsizedistribution;three-dimensionalX-raytopographywasusedtoshowthe3-Dcellmorphologiesofthestructuralfoams.Thepressureprofileinsidethemoldcavitywasalsorecordedundervarious

Background

Inrecentyears,theadvantagesoffoaminjectionmoldinghavepromptedimprovementsinstructuralfoammoldingtechnologies.TrexelInc.developedamicrocellularinjectionmoldingtechnology(MuCelltechnology)basedonareciprocating-typeinjectionmoldingmachine.6,7AgreatdealofworkhasbeencarriedouttofurtherimprovethequalityofthemicrocellularfoamsproducedusingtheMuCellprocess.Turngetal.,forexample,investigatedtheimpactofchangingprocessingconditionsonthemicrocellularfoamstructures,especiallyincasesofcoinjectionmoldingwithnanocompositesKanaietal.reportedthecreationofmicrocellularfoamswithagoodcellstructureandsurfacequalityusingcopolymerpolycarbonatereportedtheuseofCaCO3forcontrollingthemicrocellularfoammorphologyofpolypropylene(PP).Sporreretal.reportedthataclass-Asurfaceandahighvoidfractioncouldbeachievedinfoamingbyusingabreathingmold.12Recently,Bledzkietal.reviewedmicrocellularpolymermaterialsandmicrocellularcompositesreinforcedwithmineralfillersandnaturalfibers.

In2000,Shimboreportedanalternativemicrocellularfoamprocessthatemployedapreplasticating-typeinjectionmoldingmachine.14Ascrewwasusedtoplasticatethepolymer,andaplungerwasusedtoinjectthepolymerintothemoldcavityasintypicalstructuralmolding.AnotheralternativefoaminjectionmoldingprocesswasdevelopedatIKV,Aachen,Germany.Inthissystem,gaswasinjectedinaspeciallydesigned

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2