生物必修2知识点汇编.docx

上传人:b****8 文档编号:9581154 上传时间:2023-05-20 格式:DOCX 页数:46 大小:499.28KB
下载 相关 举报
生物必修2知识点汇编.docx_第1页
第1页 / 共46页
生物必修2知识点汇编.docx_第2页
第2页 / 共46页
生物必修2知识点汇编.docx_第3页
第3页 / 共46页
生物必修2知识点汇编.docx_第4页
第4页 / 共46页
生物必修2知识点汇编.docx_第5页
第5页 / 共46页
生物必修2知识点汇编.docx_第6页
第6页 / 共46页
生物必修2知识点汇编.docx_第7页
第7页 / 共46页
生物必修2知识点汇编.docx_第8页
第8页 / 共46页
生物必修2知识点汇编.docx_第9页
第9页 / 共46页
生物必修2知识点汇编.docx_第10页
第10页 / 共46页
生物必修2知识点汇编.docx_第11页
第11页 / 共46页
生物必修2知识点汇编.docx_第12页
第12页 / 共46页
生物必修2知识点汇编.docx_第13页
第13页 / 共46页
生物必修2知识点汇编.docx_第14页
第14页 / 共46页
生物必修2知识点汇编.docx_第15页
第15页 / 共46页
生物必修2知识点汇编.docx_第16页
第16页 / 共46页
生物必修2知识点汇编.docx_第17页
第17页 / 共46页
生物必修2知识点汇编.docx_第18页
第18页 / 共46页
生物必修2知识点汇编.docx_第19页
第19页 / 共46页
生物必修2知识点汇编.docx_第20页
第20页 / 共46页
亲,该文档总共46页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

生物必修2知识点汇编.docx

《生物必修2知识点汇编.docx》由会员分享,可在线阅读,更多相关《生物必修2知识点汇编.docx(46页珍藏版)》请在冰点文库上搜索。

生物必修2知识点汇编.docx

生物必修2知识点汇编

必修2遗传与进化知识点汇编

 第一章遗传因子的发现

一、遗传的物质基础

多基因遗传病

 

人类遗传病

二、遗传的基本规律

 

三、生物的变异与进化

推动

 

生物的遗传变异和进化

遗传现象

亲代与子代之间,在形态、结构和功能上常常相似。

变异现象

亲代与子代之间,子代的个体之间,总是或多或少的存在着差异。

性状

生物体任何可以鉴别的形态特征和生理特性,是基因和环境条件相互作用的结果。

DNA的复制

是指以亲代DNA分子为模板来合成子代DNA的过程。

基因

是控制生物性状的遗传物质的功能单位和结构单位,是有遗传效应的DNA片段。

基因在染色体上呈线性排列,每个基因中可以含有成百上千个脱氧核苷酸。

遗传信息

基因的脱氧核苷酸排列顺序或碱基对序列。

相对性状

同种生物同一性状的不同表现类型。

显性性状

在遗传学上,把杂种F1中显现出来的那个亲本性状。

隐性性状

在遗传学上,把杂种F1中未显现出来的那个亲本性状。

性状分离

在杂种后代中显现不同性状的现象。

显性基因

控制显性性状的基因。

隐性基因

控制隐性性状的基因。

等位基因

在一对同源染色体的同一位置上的,控制着相对性状的基因。

表现型

是指生物个体所表现出来的性状。

基因型

是指与表现型有关系的基因组成。

纯合体

由含有相同基因的配子结合成的合子发育而成的个体。

杂合体

由含有不同基因的配子结合成的合子发育而成的个体。

测交

让杂种子一代与隐性类型相交,用来测定F1的基因型。

基因的分离规律

在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代。

基因的自由组合规律

在F1产生配子时,在等位基因分离的同时,非同源染色体上非等位基因表现为自由组合。

性别决定

一般是指雌雄异体的生物决定性别的方式。

性染色体

决定性别的染色体。

常染色体

决定与性别无关的其它性状的染色体。

伴性遗传

性染色体上的基因的遗传方式,即与性别相联系的遗传方式。

基因重组

是指控制不同性状的基因的重新组合。

基因突变

是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。

自然突变

是自然发生的突变。

诱发突变、人工诱变

是在人为条件下产生的突变。

是指利用物理的、化学的因素来处理生物,使它发生基因突变。

二倍体

体细胞中含有两个染色体组的个体。

多倍体

体细胞中含有三个以上染色体组的个体。

单倍体

是指体细胞含有本物种配子染色体数目的个体。

考点6细胞增殖

不同点

 

考点7减数分裂

知识网络整理

一、减数分裂的概念

1.概念:

细胞连续分裂两次,而染色体在整个过程只复制一次的细胞分裂方式。

2.减数分裂是特殊的有丝分裂,其特殊性表现在:

①从分裂过程上看:

(在减数分裂全过程中)连续分裂两次,染色体只复制一次

②从分裂结果上看:

形成的子细胞内的遗传物质只有亲代细胞的一半

③从发生减数分裂的部位来看:

是特定生物(一般是进行有性生殖的生物)的特定部位或器官(动物体一般在精巢或卵巢内)的特定细胞才能进行(如动物的性原细胞)减数分裂。

④从发生的时期来看:

在性成熟以后,在产生有性生殖细胞的过程中进行一次减数分裂。

二、精子的形成过程(以动物为例)

1.形成部位:

精巢

2.过程及特点

第二次分裂

 

注:

①减数分裂过程中,有关纺锺体的形成,核膜、核仁的解体与重建情况与一般的有丝分裂相同。

②教材中关于细胞图示中,侧重于染色体行为的变化,没有区分染色体与染色质两种形态。

③要注意联会与形成四分体均发生在前期,此时染色体已复制。

不同点

 

减数分裂与有丝分裂的比较

比较内容

减数分裂

有丝分裂

相同点

染色体复制一次,都有纺锤体出现

不同点

细胞分裂次数

二次

一次

是否有联会、四分体

出现

不出现

非姐妹染色单体之间有无交叉互换

中期着丝点排列位置

第一次分裂中期着丝点排列在赤道板两侧,第二次分裂中期着丝点排在赤道板上

着丝点排在赤道板上

同原染色体分离

非同源染色体随机组合

着丝点分裂,姐妹染色单体分开

第二次分裂时发生

第一次分裂时发生

子细胞染色体数目

减半

不变

子细胞名称和数目

精子4个或卵细胞一个和极体三个

体细胞2个

 

重点难点阐释

1.有丝分裂和减数分裂图像的比较

末期

 

2.细胞器与有丝分裂的关系:

细胞分裂是一种重要的生理活动,有许多细胞器协调配合共同完成该过程。

线粒体:

提供DNA复制、蛋白质合成、染色体移动等过程所需的ATP

核糖体:

合成组成染色体的蛋白质和其他蛋白质。

中心体:

发出的星射线组成纺锤体,以牵引染色体移动。

高尔基体:

与细胞壁的形成有关。

3.赤道板与细胞板

赤道板是细胞中央类似于地球上赤道的位置,所以把此位置形象地称为“赤道板”,但此“板”是不存在的,是非物质的,在显微镜下是看不见的。

细胞板是植物细胞有丝分裂末期,在赤道板的位置上出现的一种物质结构,此“板”是存在的,是物质的,其形成与高尔基体有关,在显微镜下看得见的。

4.同源染色体的概念:

●联会中配对的两个染色体,形状和大小一般相同,一个来自父方,一个来自母方,叫做同源染色体(同源的含义:

来源于同一个物种)。

●在绘图中,有时用阴影和空心两种方式来表示不同的来源(父方或母方),进而从形状和大小上是否相同来区别同源染色体。

●复制得到的染色单体分离后形成的染色体在遗传物质上是一样的。

在讨论子细胞的遗传物质或基因(型)时要注意这一点

5.能理解染色体、染色单体与DNA的关系:

在染色体复制之后,着丝点分裂之前的时期内,每条染色体含有两条染色单体(染色体的数目以着丝点的数目计数),此时每条染色单体的组成情况与复制前的染色体相同。

若细胞中存在染色单体,则DNA数目是染色体数的2倍,若细胞中无姐妹染色单体,则DNA数和染色体数相等。

6.动、植物细胞有丝分裂过程的比较

植物细胞有丝分裂

动物细胞有丝分裂

相同

整个分裂过程中染色体的变化规律相同

不同

前期

细胞两极发出的纺锤丝组成纺锤体

由中心体发出的星射线,形成纺锤体

末期

细胞中部形成细胞板扩展形成细胞壁,结果形成子细胞

细胞膜从中部内陷,细胞质缢裂成两部分,结果一个细胞分裂成两个子细胞

有丝分裂过程中染色体、DNA和染色单体数目的变化

(体细胞2n)

分裂间期

前期

中期

后期

末期

染色体

2n

2n

2n

4n

4n—→2n

染色单体

0—→4n

4n

4n

0

0

DNA

2n—→4n

4n

4n

4n

4n—→2n

7.有丝分裂和减数分裂染色体、染色单体和DNA的变化曲线

能用曲线图的形式表示染色体、染色单体、DNA分子在分裂各时期的变化特点,并能说明曲线图变化的原因。

染色体

 

绘图时注意绘图的起始点、上升点、下降点。

起始点:

与体细胞中染色体数目相等处

上升点:

DNA——DNA复制时期(有丝分裂间期,减数分裂第一次分裂的间期);

染色体——着丝点分裂时期(有丝分裂后期,减数分裂第二次分裂的后期)

下降点:

细胞一分为二时(有丝分裂末期,减数分裂第一、第二次分裂末期)

8.减数分裂是遗传学三大遗传规律的细胞学基础:

复习本节时,要注意联系遗传学知识,并进一步理解与基因之间的关系。

减数分裂第一次分裂后期:

同源染色体分离是基因分离定律的细胞学基础;

减数分裂第一次分裂后期:

非同源染色体自由组合是基因自由组合定律的细胞学基础;

减数第一次分裂四分体时期:

同原染色体的非姐妹染色单体可能发生交叉互换是基因连锁互换定律的细胞学基础。

1.孟德尔之所以选取豌豆作为杂交试验的材料是由于:

(1)豌豆是自花传粉植物,且是闭花授粉的植物;

(2)豌豆花较大,易于人工操作;

(3)豌豆具有易于区分的性状。

2.遗传学中常用概念及分析

(1)性状:

生物所表现出来的形态特征和生理特性。

相对性状:

一种生物同一种性状的不同表现类型。

举例:

兔的长毛和短毛;人的卷发和直发等。

性状分离:

杂种后代中,同时出现显性性状和隐性性状的现象。

如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。

显性性状:

在DD×dd杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。

决定显性性状的为显性遗传因子(基因),用大写字母表示。

如高茎用D表示。

隐性性状:

在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。

决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。

(2)纯合子:

遗传因子(基因)组成相同的个体。

如DD或dd。

其特点纯合子是自交后代全为纯合子,无性状分离现象。

杂合子:

遗传因子(基因)组成不同的个体。

如Dd。

其特点是杂合子自交后代出现性状分离现象。

(3)杂交:

遗传因子组成不同的个体之间的相交方式。

如:

DD×ddDd×ddDD×Dd等。

自交:

遗传因子组成相同的个体之间的相交方式。

如:

DD×DDDd×Dd等

测交:

F1(待测个体)与隐性纯合子杂交的方式。

如:

Dd×dd

正交和反交:

二者是相对而言的,

如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交;

如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。

3.杂合子和纯合子的鉴别方法

若后代无性状分离,则待测个体为纯合子

测交法

若后代有性状分离,则待测个体为杂合子

若后代无性状分离,则待测个体为纯合子

自交法若后代有性状分离,则待测个体为杂合子

4.常见问题解题方法

(1)如后代性状分离比为显:

隐=3:

1,则双亲一定都是杂合子(Dd)

即Dd×Dd3D_:

1dd

(2)若后代性状分离比为显:

隐=1:

1,则双亲一定是测交类型。

即为Dd×dd1Dd:

1dd

(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

即DD×DD或DD×Dd或DD×dd

5.分离定律

其实质就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。

第2节孟德尔豌豆杂交试验

(二)

1.两对相对性状杂交试验中的有关结论

(1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

(2)F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。

(3)F2中有16种组合方式,9种基因型,4种表现型,比例9:

3:

3:

1

YYRR1/16

YYRr2/16

亲本类型

双显(Y_R_)YyRR2/169/16黄圆

YyRr4/16

纯隐(yyrr)yyrr1/161/16绿皱

YYrr1/16

重组类型

单显(Y_rr)YYRr2/163/16黄皱

yyRR1/16

单显(yyR_)yyRr2/163/16绿圆

注意:

上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。

2.常见组合问题

(1)配子类型问题

如:

AaBbCc产生的配子种类数为2x2x2=8种

(2)基因型类型

如:

AaBbCc×AaBBCc,后代基因型数为多少?

先分解为三个分离定律:

Aa×Aa后代3种基因型(1AA:

2Aa:

1aa)

Bb×BB后代2种基因型(1BB:

1Bb)

Cc×Cc后代3种基因型(1CC:

2Cc:

1cc)

所以其杂交后代有3x2x3=18种类型。

(3)表现类型问题

如:

AaBbCc×AabbCc,后代表现数为多少?

先分解为三个分离定律:

Aa×Aa后代2种表现型

Bb×bb后代2种表现型

Cc×Cc后代2种表现型

所以其杂交后代有2x2x2=8种表现型。

3.自由组合定律

实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。

4.常见遗传学符号

符号

P

F1

F2

×

含义

亲本

子一代

子二代

杂交

自交

母本

父本

第二章基因和染色体的关系

第一节减数分裂和受精作用

知识结构

精子的形成过程

减数分裂

卵细胞形成过程

减数分裂和受精作用

配子中染色体组合的多样性

受精作用

受精作用的过程和实质

1.正确区分染色体、染色单体、同源染色体和四分体

(1)染色体和染色单体:

细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。

所以此时染色体数目要根据着丝点判断。

(2)同源染色体和四分体:

同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体。

四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。

(3)一对同源染色体=一个四分体=2条染色体=4条染色单体=4个DNA分子。

2.减数分裂过程中遇到的一些概念

同源染色体:

上面已经有了

联会:

同源染色体两两配对的现象。

四分体:

上面已经有了

交叉互换:

指四分体时期,非姐妹染色单体发生缠绕,并交换部分片段的现象。

减数分裂:

是有性生殖的生物在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。

3.减数分裂

特点:

复制一次,分裂两次。

结果:

染色体数目减半,且减半发生在减数第一次分裂。

场所:

生殖器官内

 

 

4.精子与卵细胞形成的异同点

比较项目

不同点

相同点

精子的形成

卵细胞的形成

染色体复制

复制一次

第一次分裂

一个初级精母细胞(2n)产生两个大小相同的次级精母细胞(n)

一个初级卵母细胞(2n)(细胞质不均等分裂)产生一个次级卵母细胞(n)和一个第一极体(n)

同源染色体联会,形成四分体,同源染色体分离,非同源染色体自由组合,细胞质分裂,子细胞染色体数目减半

第二次分裂

两个次级精母细胞形成四个同样大小的精细胞(n)

一个次级卵母细胞(细胞质不均等分裂)形成一个大的卵细胞(n)和一个小的第二极体。

第一极体分裂(均等)成两个第二极体

着丝点分裂,姐妹染色单体分开,分别移向两极,细胞质分裂,子细胞染色体数目不变

有无变形

精细胞变形形成精子

无变形

分裂结果

产生四个有功能的精子(n)

只产生一个有功能的卵细胞(n)

精子和卵细胞中染色体数目均减半

注:

卵细胞形成无变形过程,而且是只形成一个卵细胞,卵细胞体积很大,细胞质中存有大

量营养物质,为受精卵发育准备的。

5.减数分裂和有丝分裂主要异同点

比较项目

减数分裂

有丝分裂

染色体复制次数及时间

一次,减数第一次分裂的间期

一次,有丝分裂的间期

细胞分裂次数

二次

一次

联会四分体是否出现

出现在减数第一次分裂

不出现

同源染色体分离

减数第一次分裂后期

着丝点分裂

发生在减数第二次分裂后期

后期

子细胞的名称及数目

性细胞,精细胞4个或卵1个、极体3个

体细胞,2个

子细胞中染色体变化

减半,减数第一次分裂

不变

子细胞间的遗传组成

不一定相同

一定相同

6.识别细胞分裂图形(区分有丝分裂、减数第一次分裂、减数第二次分裂)

(1)、方法(点数目、找同源、看行为)

第1步:

如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。

第2步:

看细胞内有无同源染色体,若无则为减数第二次分裂某时期的细胞分裂图;若有则为减数第一次分裂或有丝分裂某时期的细胞分裂图。

第3步:

在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。

(2)例题:

判断下列各细胞分裂图属何种分裂何时期图。

[解析]:

甲图细胞的每一端均有成对的同源染色体,但无联会、四分体、分离等行为,且每一端都有一套形态和数目相同的染色体,故为有丝分裂的后期。

乙图有同源染色体,且同源染色体分离,非同源染色体自由组合,故为减数第一次分裂的后期。

丙图不存在同源染色体,且每条染色体的着丝点分开,姐妹染色单体成为染色体移向细胞两极,故为减数第二次分裂后期。

7.受精作用:

指卵细胞和精子相互识别、融合成为受精卵的过程。

注:

受精卵核内的染色体由精子和卵细胞各提供一半,但细胞质几乎全部是由卵细胞提供,因此后代某些性状更像母方。

意义:

通过减数分裂和受精作用,保证了进行有性生殖的生物前后代体细胞中染色体数目的恒定,从而保证了遗传的稳定和物种的稳定;在减数分裂中,发生了非同源染色体的自由组合和非姐妹染色单体的交叉互换,增加了配子的多样性,加上受精时卵细胞和精子结合的随机性,使后代呈现多样性,有利于生物的进化,体现了有性生殖的优越性。

下图讲解受精作用的过程,强调受精作用是精子的细胞核和卵细胞的细胞核结合,受精卵中的染色体数目又恢复到体细胞的数目。

8.配子种类问题

由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。

9.植物双受精(补充)

被子植物特有的一种受精现象。

花粉被传送到雌蕊柱头后,长出花粉管,伸达胚囊,管的先端破裂,放出两精子,其中之一与卵结合,形成受精卵,另一精子与两个极核结合,形成胚乳核;经过一系列的发展过程,前者形成胚,后者形成胚乳,这种双重受精的现象称双受精。

注:

其中两个精子的基因型相同,胚珠中极核与卵细胞基因型相同。

例:

一株白粒玉米(aa)接受红粒玉米(AA)的花粉,所结的种子的胚细胞、胚乳细胞基因型依次是:

Aa、Aaa

第二节基因在染色体上

1.萨顿假说推论:

基因在染色体上,也就是说染色体是基因的载体。

因为基因和染色体行为存在着明显的平行关系。

2.、基因位于染色体上的实验证据

果蝇杂交实验分析

3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列

4.基因的分离定律的实质

基因的自由组合定律的实质

第三节伴性遗传

1.伴性遗传的概念

2.人类红绿色盲症(伴X染色体隐性遗传病)

特点:

⑴男性患者多于女性患者。

⑵交叉遗传。

即男性→女性→男性。

⑶一般为隔代遗传。

2.抗维生素D佝偻病(伴X染色体显性遗传病)

特点:

⑴女性患者多于男性患者。

⑵代代相传。

4、伴性遗传在生产实践中的应用

3、人类遗传病的判定方法

口诀:

无中生有为隐性,有中生无为显性;隐性看女病,女病男正非伴性;显性看男病,男病女正非伴性。

第一步:

确定致病基因的显隐性:

可根据

(1)双亲正常子代有病为隐性遗传(即无中生有为隐性);

(2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。

第二步:

确定致病基因在常染色体还是性染色体上。

1在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;

2在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。

3不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上的遗传病;

4题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等可直接确定。

注:

如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。

4、性别决定的方式

类型

XY型

ZW型

性别

体细胞染色体组成

2A+XX

2A+XY

2A+ZW

2A+ZZ

性细胞染色体组成

A+X

A+X

A+Y

A+Z

A+W

A+Z

生物类型

人、哺乳类、果蝇及雌雄异株植物

鸟类、蛾蝶类

第三章基因的本质

第一节DNA是主要的遗传物质

1.肺炎双球菌的转化实验

(1)、体内转化实验:

1928年由英国科学家格里菲思等人进行。

①实验过程

结论:

在S型细菌中存在转化因子可以使R型细菌转化为S型细菌。

(2)、体外转化实验:

1944年由美国科学家艾弗里等人进行。

①实验过程

结论:

DNA是遗传物质

2.噬菌体侵染细菌的实验

1、实验过程

①标记噬菌体

含35S的培养基

含35S的细菌35S

蛋白质外壳含35S的噬菌体

含32P的培养基

含32P的细菌

内部DNA含32P的噬菌体

②噬菌体侵染细菌

含35S的噬菌体

细菌体内没有放射性35S

含32P的噬菌体

细菌体内有放射线32P

结论:

进一步确立DNA是遗传物质

3.烟草花叶病毒感染烟草实验:

(1)、实验过程

(2)、实验结果分析与结论

烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质。

4、生物的遗传物质

非细胞结构:

DNA或RNA

生物原核生物:

DNA

细胞结构

真核生物:

DNA

结论:

绝大多数生物(细胞结构的生物和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。

第二节DNA分子的结构

1.DNA分子的结构

(1)基本单位---脱氧核糖核苷酸(简称脱氧核苷酸)

2、DNA分子有何特点?

⑴稳定性

是指DNA分子双螺旋空间结构的相对稳定性。

与这种稳定性有关的因素主要有以下几点:

①DNA分子由两条脱氧核苷酸长链盘旋成精细均匀、螺距相等的规则双螺旋结构。

②DNA分子中脱氧核糖和磷酸交替排列的顺序稳定不变。

③DNA分子双螺旋结构中间为碱基对、碱基之间形成氢键,从而维持双螺旋结构的稳定。

④DNA分子之间对应碱基严格按照碱基互补配对原则进行配对。

⑤每个特定的DNA分子中,碱基对的数量和排列顺序稳定不变。

⑵多样性

构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性。

⑶特异性

每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。

3.DNA双螺旋结构的特点:

⑴DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。

⑵DNA分子外侧是脱氧核糖和磷酸交替连接而成的基本骨架。

⑶DNA分子两条链的内侧的碱基按照碱基互补配对原则配对,并以氢键互相连接。

4.相关计算

(1)A=TC=G

(2)(A+C)/(T+G)=1或A+G/T+C=1

(3)如果(A1+C1)/(T1+G1)=b

那么(A2+C2)/(T2+G2)=1/b

(4)(A+T)/(C+G)=(A1+T1)/(C1+G1)

=(A2+T2)/(C2+G2)

=a

例:

已知DNA分子中,G和C之和占全部碱基的46%,又知在该DNA分子的H链中,A和C分别占碱基数的28%和22%,则该DNA分子

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试认证 > 其它考试

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2