f481d3d6cd1755270722192e453610661fd95a00.docx

上传人:b****0 文档编号:9752720 上传时间:2023-05-21 格式:DOCX 页数:65 大小:709.05KB
下载 相关 举报
f481d3d6cd1755270722192e453610661fd95a00.docx_第1页
第1页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第2页
第2页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第3页
第3页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第4页
第4页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第5页
第5页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第6页
第6页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第7页
第7页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第8页
第8页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第9页
第9页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第10页
第10页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第11页
第11页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第12页
第12页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第13页
第13页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第14页
第14页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第15页
第15页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第16页
第16页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第17页
第17页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第18页
第18页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第19页
第19页 / 共65页
f481d3d6cd1755270722192e453610661fd95a00.docx_第20页
第20页 / 共65页
亲,该文档总共65页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

f481d3d6cd1755270722192e453610661fd95a00.docx

《f481d3d6cd1755270722192e453610661fd95a00.docx》由会员分享,可在线阅读,更多相关《f481d3d6cd1755270722192e453610661fd95a00.docx(65页珍藏版)》请在冰点文库上搜索。

f481d3d6cd1755270722192e453610661fd95a00.docx

表面化学第七章

第七章多相分散体系的稳定性

一种物质以极微小的粒子分散在另一种物质中所形成的体系称为分散体系。

当分散质点为原子,分子大小时,分散体系即为真溶液,体系中不存在相界面,且是热力学稳定体系。

当分散质点为胶体颗粒大小(1~100nm)时,分散体系称为胶体分散体系,简称胶体。

胶体中存在相界面,是热力学不稳定体系。

高分子化合物溶液其分散相质点具有胶体颗粒大小,并因此具有一些胶体溶液的性质如扩散慢,不能透过半透膜等,所以也被称为胶体。

但高分子溶液本质上却是真溶液,即是均相、热力学稳定体系,与热力学不稳定的胶体分散体系在性质上又有很大的不同。

为区别这两种胶体分散体系,称前者为憎液胶体,而称后者为亲液胶体。

在憎液胶体中,被分散的物质称为分散相,另一相则称为连续相或分散介质。

多相分散体系系指体系中存在相界面的分散体系。

它包括上述所提到的憎液胶体和分散质点更大(约几百nm)的粗分散体系。

这类体系在日常生活和许多任务业过程中常常可见,如牛奶,豆浆,化妆品,血液,油漆,油墨,涂料,各种乳液,泡沫,烟雾,污水等,并涉及到分析化学,物理化学,生物化学和分子生物学,化学化工,环境科学,材料科学,石油科学等学科以及医药,农药,食品,日用化工等多个行业。

在多数情况下,这类体系并不涉及化学反应。

由于存在巨大的相界面,这类体系是热力学不稳定体系。

分散相质点总是趋向于变粗。

另一方面,在适当条件下,分散相质点可以在相当长时间内保持均匀分布,即保持热力学上的“动态稳定”。

通常所称的多相分散体系的“稳定性”就是指这种动力学意义上的相对稳定。

在一些场合,需要设法提高这种稳定性,而在另一些场合,则需要降低或破坏这种稳定性,如破乳,消泡,水的纯化等。

因此对这类体系,主要讨论的是其稳定性,涉及到的理论主要是界面化学。

根据分散相和分散介质的物态,多相分散体系可以有液/液,气/液,固/液,液/固,气/固,固/固以及液/气,固/气等分散体系。

由于本书局限于讨论溶液界面化学,因此本章将只讨论涉及分散介质为液体的前三种分散体系。

乳状液,泡沫,以及悬浮液即是其典型代表。

这些体系在性质上有各自的特点,但作为多相分散体系,它们有许多共性,特别是液/液和固/液分散体系。

因此本章将首先讨论有关的分散体系的基本共性,在此基础上再分别讨论各具体体系的特殊性质。

本书前几章的内容已为这种讨论提供了必要的基础,有关的基础理论将在此得到综合运用。

7.1多相分散体系的一般性质

7.1.1高比表面积

设想体积相当于半径为1cm的球的某物质分散于水中,将其不断地切割成半径更小的球形质点,则体系中球形质点的数目,每个球形质点的半径、体积以及体系的总表面积如表7-1所示。

未分割时(半径1cm),界面面积仅为4.19cm2,当分割至半径为10-4cm时,总界面面积增至1.26105cm2,而进一步分割到胶体大小如半径为10-8cm时,总面积达到1.26109cm2!

如果体系的界面张力为50mN/m,则体系的总界面能达到6.31010erg,或6.3kJ。

这表明了界面面积以及界面能对分散体系的重要性,或者表面对小质点的重要性。

表7-1分散体系界面面积与质点大小的关系

半径

R(cm)

质点数目

n

每个球的体积V(cm3)

每个球的面积A(cm2)

总面积

A(cm2)

1

1

4.19

1.26101

1.26101

510-1

8

5.2410-1

3.14

2.51101

2.510-1

6.4101

6.5510-2

7.8610-1

5.03101

10-4

1012

4.210-12

1.2610-7

1.26105

10-5

1015

4.210-15

1.2610-9

1.26106

10-6

1018

4.210-18

1.2610-11

1.26107

10-7

1021

4.210-21

1.2610-13

1.26108

10-8

1024

4.210-24

1.2610-15

1.26109

通常可用比表面积Asp来说明表面积随质点不断减小所显示出的越来越明显的重要性。

定义比表面积为:

Asp=

(7-1)

对均匀大小的球形质点,比表面积为:

(7-2)

式中为分散质点的密度。

设不随质点大小而变化,则上式简化为:

(7-3)

这表明,球形质点的比表面积与其半径成反比。

对非球形质点或非均一质点,关系式不尽相同,但比表面积随质点变小而增大的趋势是一致的。

分散体系的这一特性显示出界面能的重要性。

事实上高界面能正是导致这类体系热力学不稳定的根本原因。

7.1.2质点大小与形状

质点大小是区别分散体系的一个重要指标,是表征分散体系分散度的一个重要物理量。

而质点形状的不同,也将导致分散体系性质上的差异。

图7-1单分散的聚苯乙烯胶乳

质点的显微照片(平均直径5μm)

1,球形质点

如果质点都是均一的球形,则以半径或直径来衡量其大小,其值可用实验方法测出。

此种体系称为单分散体系,如图7-1所示的聚苯乙烯胶乳质点。

然而象这样的实际单分散体系为数甚少。

一般的分散体系,质点大小不均匀,因而称为多分散体系。

再者,质点的形状可能偏离球形,特别是固/液分散体系。

2,非球形质点

对非球形质点,若能测出比表面积(比如对固体颗粒用N2吸附法),则按式(7-2)所求出的R称为等效球半径。

它表示从表面的角度考虑,这些非球形质点的大小相当于半径为R的球形质点。

此外可通过光学显微镜或电子显微镜照片来测量粒子大小。

一种方法是沿某一个方向划出质点投影面积等分线,取其长度作为表征颗粒大小的参数,称为Martin直径。

另一种方法是在显微镜目镜中插入一个刻有不同直径圆的玻璃片,将质点投影面积与一系列直径不同的圆相比较,找出最接近质点投影面积的圆,取该圆的直径作为表征参数。

通常不同大小圆的直径以

的倍数递增。

图7-2和图7-3为这两种方法的示意图。

为了获得统计学上有意义的结果,必需观测很大数目的质点。

因此这两种方法都很费时。

图7-2Martin直径示意图图7-3利用标准圆估算

不规则质点的特征尺寸

3,形状因子

仅仅区分球形质点和非球形质点是远远不够的。

同是非球形质点,有些多面体形可能很接近球体,而另一些如棒状或盘状则可能远远偏离球体。

为此还需要有另一个参数来表征对球体的偏差。

常用的方法是把质点当着旋转椭球体,如图7-4所示。

规定椭球体沿转轴方向的“半径”为a,赤道面上的“半径”为b,则当a=b时,为球形质点;a>b时为长椭球体;a

比值a/b叫做椭球体的轴比,即为质点的形状因子,用来表示质点偏离球体的程度。

通常此比值距离1(大于1或小于1)越远,则非球形性越大。

因此表征非球形质点时,采用两参数比单参数更能反映质点的形态。

图7-4旋转椭球体及其特征

(a)长椭球体(a>b)(b)扁椭球体(a

此外还有一类“无规线团”状质点。

通常是线状柔性材料(如高分子)因热运动而采取的一种无规构型。

对这种质点,以线团半径表征其大小。

7.1.3单分散和多分散体系

前已述及单分散和多分散体系的概念。

实际体系中,多分散体系远多于单分散体系。

类似于球形质点和非球形质点的表征,单分散体系只需一个参数如直径或半径即可表征,而多分散体系仅靠一个参数如平均直径(半径)并不能很好地表征。

平均直径相同的体系,其质点大小分布可能有很大的差别,从而带来性质上的巨大差异。

因此对多分散体系,至少需用平均质点大小和质点大小分布两个参数来表征。

1,平均质点大小

对多分散体系,常常用平均直径(或半径)来表示质点大小。

但有关平均直径的定义有多种,各种平均直径在数值上各不相同,但具有内在的联系。

表7-2给出了一系列常见的平均直径的名称及其定义。

理论上,表中ni表示直径为di的质点总数,然而实际上,di表示一个小的直径范围,ni表示直径落在这一范围内的质点数。

这个直径范围称为级分(Division),用这个直径范围的中间值di作为级标符号。

于是各个级分的质点数目为ni,ni为所有质点的总数。

表7-2常见平均直径及其定义

名称

符号

定义式

所平均的量

数均直径

直径

表面平均直径

直径平方

体积平均直径

直径立方

体积面积平均直径

(1)数均直径

数均直径最为简单,它表示的是各质点直径的平均值。

由于ni为常数,于是数均直径的定义可写为:

(7-4)

式中:

(7-5)

称为级分的质点分数。

显然fi=1。

数均直径中,加权因子是级分所占的数目。

(2)表面平均直径

这个平均直径也以级分所占的数目作加权因子,但平均的是直径的平方。

以fi代入其定义式得:

(7-6)

与质点平均面积

(7-7)

相比较得:

(7-8)

可见表面平均直径表示具有这一平均面积的球的直径。

通常多分散体系的表面平均直径总是大于数均直径,因为较大的直径对平方求和的贡献相对地大于对直径求和的贡献。

(3)体积平均直径

这个直径平均的是直径的立方。

引入fi,

的定义可写成:

(7-9)

与平均体积

(7-10)

相比较得:

(7-11)

它表示具有平均体积为

的球形质点的直径。

(4)体积/面积平均直径

由定义可知,它相当于球形质点的体积/面积平均直径,其中球的体积以

计算,而球的面积以

计算。

对单分散体系,这四个平均直径完全相等,互相之间的比值为1。

但对多分散体系,

>

>

>

,它们的比值偏离1的程度反映了体系的多分散性大小。

(*对高分子溶液,通常以分子量来表示质点大小,相应地可得到数均分子量

和重均分子量

,式中Mi为分子量级分的中间值,wi为分子量落在级分Mi内的质点的重量,wi为质点的总重量。

测定分子量时依据不同的方法得到的是不同意义的分子量,例如,渗透压法得到数均分子量,而光散射法得到的是重均分子量。

2,质点大小分布

通常可用柱状图、分布表、累积分布曲线等表示质点大小分布,如图7-5和表7-3所示。

图7-5相应于表7-3的柱状图(a)和累积分布曲线(b)

质点大小分布特征可用标准偏差σ表示:

(7-12)

当质点数目很多时,

,于是σ可表示为:

(7-13)

按此式计算,表7-3中的平均值和标准偏差分别为0.64和0.24μm。

标准偏差越大,则分布越宽,多分散性越显着。

表7-3假想的400个球形质点的大小分布表

级分范围d<(μm)

级标

di(μm)

质点数

ni

质点分数

fi

d

总数nt,i

0-0.1

0.05

7

0.018

7

0.1-0.2

0.15

15

0.038

22

0.2-0.3

0.25

18

0.045

40

0.3-0.4

0.35

28

0.070

68

0.4-0.5

0.45

32

0.080

100

0.5-0.6

0.55

70

0.175

170

0.6-0.7

0.65

65

0.163

235

0.7-0.8

0.75

59

0.148

294

0.8-0.9

0.85

45

0.113

339

0.9-1.0

0.95

38

0.095

377

1.0-1.1

1.05

19

0.048

396

1.1-1.2

1.15

4

0.010

400

如果将柱状图中的级分数目增加,则每个组分的宽度缩小。

令组分数目,则柱状图就变为一个平滑的分布曲线,并可用一个数学式来表示分布函数。

其中最常用的就是正态分布(又称Gauss分布)函数:

(7-14)

f(x)表示质点的某项量(比如直径)落在x和x+dx之间的质点所占的分数;σ为标准偏差,它反映分布宽度。

图7-6即为一正态分布曲线,可见正态分布曲线相对于平均值是对称的。

大量完全不规则的因子引起的分布通常是正态分布。

对多分散体系,正态分布主要适用于凝聚,沉淀。

聚集等过程。

除了正态分布曲线外,还有其它的分布函数如对数正态分布函数也用于描述分散体系的质点大小。

图7-6正态分布曲线示意图

7.1.4稀分散体系的粘度

粘度是反映流体流动性质的一个重要的物理量,是流体的重要性质。

对多相分散体系,其意义不仅在于此,还在于它与体系的稳定性密切相关。

不同的流体在粘度方面往往显示出不同的性质。

为区别之,人们将流体分为牛顿流体和非牛顿流体。

当一连续相流体中含有分散质点时,体系的粘度特性亦将发生显着变化。

这种变化通常用Einstein稀分散体粘度定律来描述。

由于多种因素的影响和体系的复杂性,实际多相分散体系的粘度往往与Einstein粘度定律有偏差。

对各种偏差的分析和修正又使得Einstein粘度定律扩大了适用范围。

本节将在简介粘度以及牛顿流体,非牛顿流体等概念的基础上,重点介绍Einstein粘度定律及其有关偏差的修正。

1,牛顿流体和非牛顿流体

设有一流体夹于两个面积为A的平板之间,如图7-7所示。

若对其中的一个板施加一个与x方向平行的力F,则板将向x方向运动。

紧靠该板的流体将以与该板相同的速度,度,设为vx,,一起向x方向运动,而紧靠另一个平面的流体的速度则为零。

于是两板之间的流体沿x方向将有一个流速分布

此速度分布与作用于板上的力F以及流体的性质有关。

对不同性质的流体,以

作图可得如图7-8所示的各种关系。

图7-8中

成直线关系并通过原点的流体称为牛顿流体,即有:

=

(=D)(7-15)

图7-7施加于单位面积上的力图7-8不同流体的~D关系图

与流体流速关系示意图

式中比例常数η即为粘度。

因为力F的方向与流体运动方向相同,即为剪切力,所以

=称为剪切应力,而

=

=D也常被称为切变速度。

图7-8表明,一些流体不满足式(7-15)。

这些流体统称为非牛顿流体,其粘度为曲线上各点的斜率,是切变速度的函数,有时称为表观粘度。

非牛顿流体包括:

(1)假塑性流体(剪切变薄型)

~D曲线通过原点,在高剪速时成直线关系,η为常数,但在低剪速时,η随剪速增加而减小。

(2)胀流型流体(剪切变稠)

~D曲线通过原点,但为非线性,η随剪速增大而增大。

(3)塑性流体

~D曲线既不通过原点,又为非线性。

有一个低屈服剪力和一个高屈服剪力,还有一个外推屈服剪力。

当剪力低于低屈服剪力时,不产生剪速;当剪力高于高屈服剪力时,η变为常数;当剪力处于两屈服剪力之间时,η为变数,随剪力增加而减小,与假塑性流体相类似。

(4)Bingham型流体

~D关系为直线,但不通过原点,即存在一个屈服剪力。

牛顿流体,非牛顿流体的概念完全可推广到胶体,即相应地有牛顿胶体和非牛顿胶体。

2,Einstein粘度定律

流体力学证明,单纯牛顿流体在管道中流动时,速度沿管径呈抛物线分布,如图7-9(a)所示。

当流体中有胶体大小的质点存在时,若质点在流动过程中不转动,则它两侧的流体速度与无此质点存在时相比将减小,即流体粘度上升,如图7-9(b)。

若质点转动,则消耗了本来用于维持流体运动的能量,也使粘度增加(图7-9(c))。

因此可以预计,质点浓度越大,引起的粘度增加也越大。

图7-9分散体流动形式示意图

关于分散质点影响分散体系粘度的经典理论是Einstein建立的稀分散体的粘度定律。

在导出此定律时,为了排除复杂因素的影响,对体系作如下假设:

(1)介质(溶剂)的密度和粘度是常数

(2)流速很低

(3)分散质点为刚性球,球面与介质之间没有滑动

(4)分散相质点之间的距离很大(浓度很稀),质点间无相互作用

(5)质点(刚性球)比溶剂分子大得多,溶剂可看着连续介质

于是稀分散体的粘度可表示为:

(7-16)

式中为分散质点的体积分数(表示浓度大小),0为溶剂(连续相)的粘度。

若只保留的一次方项,上式简化为:

(7-17)

此即为稀分散体的Einstein粘度定律。

3,Einstein粘度定律的实验验证

Einstein粘度定律具有简单的形式,这使得实验验证比较容易。

用几种不同尺寸,不同材料的球形质点对Einstein粘度定律的实验验证如图7-10所示。

结果表明,至少在很小时,Einstein粘度定律与实验结果符合得很好。

但当较大(>0.1)时,开始出现正偏差,即实际粘度比预测的要大。

图7-10Einstein粘度定律的实验验证图-11某分散体系比浓粘度对作图

若将式(7-16)中的高次幂项给予保留,则必能扩大Einstein粘度定律的适用浓度范围:

(7-18)

式(7-18)可重新写成:

(7-19)

类似于比浓粘度

,于是以

对作图,应得到一直线,斜率为K1,截距为2.5。

图7-11即为对某玻璃球体系得到的结果,表明至少在较低浓度时的确有此直线关系。

令:

(7-20)

称为特性粘度。

当符合Einstein粘度定律时,[]=2.5。

如图7-11所示,实际多分散体系并不严格符合Einstein粘度定律的假设,因而可能显示出偏差。

4,对Einstein定律的偏离

(1)多分散的影响

Einstein理论中并未包括粘度对质点大小的依赖关系,因此不论对单分散体系,还是多分散体系,Einstein定律应该同样适用。

设某体系的质点是由几种不同大小的球组成的混合物,每种球的体积分数为i,对每一个组分,i很小,足以使Einstein粘度定律成立。

考虑逐次加入各个组分,则有:

加入组分1时,

(7-21)

加入组分2时,

(7-22)

即有一般式:

(7-23)

式中为加入后一个组分之前分散体的粘度。

设加入各种球后体系的总体积分数为,di引起的的变化为:

d=di(1-)(7-24)

于是有:

(7-25)

积分上式并注意到=0时,=0,即得:

(7-26)

当0时,上式还原为Einstein公式。

可以证明,当增大时,式(7-26)所得结果大于式(7-16)所得到的结果,即多分散体系将造成对Einstein公式的正偏差。

但在无限稀释时不

再有影响。

(2)溶剂化的影响

以上表明,在极稀浓度时,多分散性并不引起对Einstein公式的偏差。

然而实际分散体系却与平均粒子大小有很强的依赖关系。

图7-12即为一实例。

从图中可以看出,只有当质点很大时,才符合Einstein公式。

当质点变小时,明显偏离Einstein公式。

要使小质点的曲线与大质点的重合,一种方式是将曲线向右移(即向相体积大的方向移动),这预示着当质点尺寸减小时,按质点大小计算的体积分数并不代表实际体系中的体积分数。

设想水溶性聚合物在水中(亲液胶体)是水化的,当质点运动时,必然带着溶剂化层一起运动,从而使实际体系的相体积大大增加。

对多相分散体系(憎液胶体),第三组分如乳化剂、分散剂等在界面的吸附也将产生一个水化层,从而使粘度偏离Einstein定律。

图7-12聚甲基丙烯酸酯质点的比浓粘度与体积分数的关系

根据适当的模型能够考察质点溶剂化引起的对Einstein定律的偏离。

对多相体系,设质点为球形,显然溶剂化限于质点的表面。

溶剂化所导致的与质点结合的溶剂数量与质点的比表面积Asp成正比。

设球形质点的半径为R,溶剂化层厚度为∆R,则溶剂化层的体积应为Aspm2∆R,式中m2为分散相质点的质量。

于是溶剂化质点的总体积为:

(7-27)

溶剂化使一部分溶剂起了分散相的作用。

对很稀的分散体系,由于分散相浓度很低,可以认为溶剂化对溶剂体积的减少可忽略不计,但对分散相而言,却大大增加了其体积分

数。

设未溶剂化时质点的体积分数为干,则溶剂化后质点体积分数变为:

(7-28)

这表明溶剂化使分散相体积分数增加了

倍。

将这一结果代入Einstein公式得:

(7-29)

这样,以干物质体积分数求出的特性粘度为2.5

,比Einstein公式预期的2.5要大,增加的倍数正好是溶剂化效应使分散相体积增加的倍数。

上式表明,当其它条件相同时,质点越小(R越小),这种效应越显着。

一个有趣的结果是,如果无限稀释时特性粘度偏离Einstein公式的结果纯粹由溶剂化效应所引起,则可通过测定实际体系在无限稀释时的特性粘度来求出溶剂化层厚度∆R。

例如图7-12中

=38μm时实测的特性粘度为5.8,于是有:

(7-30)

求得∆R/R=0.44。

对亲液胶体,溶剂化可能均匀地遍及整个分散相质点,理论上可以作类似的分析,其对特性粘度的影响完全类似。

以上分析把所有的偏差都归结于溶剂化效应,这似乎不尽合理。

事实上还须考虑质点形状等因素的影响。

3,非球形质点效应

球形质点是一种“理想”形状,但在实际体系中为数甚少。

对非球形质点,通常可根据对球形的偏差来描述。

一种方法就是把质点看着是旋转椭球体,其椭圆度用轴比a/b来表示。

当a/b=1时,即为球形质点。

由于质点的不对称性,在流动过程中质点将采取择优取向。

对非常小的质点,布朗运动引起的无规化取向占主导地位。

无规化取向导致质点在随流体运动的同时,还将发生转动。

转动因消耗更多的能量将使粘度比无转动时要大。

因此非球形质点将引起对Einstein公式的正偏差。

Einstein公式是基于球形质点导出的,显然对非球形质点,公式将不再适用。

对长椭球体分散体系,R.Simha推导出下列粘度方程:

(7-31)

式中为常数,对椭球体为1.5,对圆柱棒体为1.8。

假如对Einstein公式的偏离完全由质点的不对称性所引起,则根据实验测定的[],从上式可求出轴比a/b。

例如对图7-12中

=38μm的曲线,假定是未溶剂化非球形质点,则轴比为5.0。

Simha公式的另一个结果是随着轴比的增加,分散体系的粘度对Einstein公式的偏离将越来越显着。

即使在无限稀释时,也不能趋近Einstein理论值。

因此若溶剂化效应和不对称效应同时存在,就不能估计两者分别对偏差的贡献。

综上所述,用特性粘度作工作变量,可以在一定程度上消除浓度和多分散性的影响,因为在无限稀释时,这些影响不存在。

但质点溶剂化和不对称性的影响不但不能消除,而且仅靠粘度数据难以将两者分开。

需要靠独立的其它数据估算出其中的一种影响,比如从电镜照片求得轴比,才能利用粘度数据确定另一种影响。

7.2沉降与扩散及其平衡

通常多相分散体系的分散质点和连续相的密度并不相等,因此在重力场中分散相质点将发生沉降,导致分散体系不稳定。

另一方面,如果质点足够小,则由于热力的作用将导致质点扩散,从而可对抗沉降作用。

在实际体系中,存在着沉降与扩散的平衡。

由于沉降和扩散都强烈依赖于质点大小,因此利用沉降和扩散原理可以测定分散相质点的质量(颗粒大小)或分子量,并已发展成为测定分散相质点大小的主要方法。

描述质点沉降规律的理论有Stokes沉降定律,而描述扩散规律的则有Fick定律。

本小节将以这两个定律为中心,讨论沉降和扩散及其平衡,以及其它相关的问题。

7.2.1重力场下的沉降和Stokes定律

设有一体积为V,密度为2的质点浸在密度为1的流体中。

在重力场中,该质点受到重力Fg和浮力Fb的作用,于是净力:

(7-32)

使质点作加速运动。

式中g为重力加速度。

若2>1,质点下沉,称为沉降;反之若2<1,则质点上浮,称为“分层”。

由于质点是在粘性介质中运动,因此必受到粘性阻力的作用。

当F净与粘性阻力相当时,质点作匀速直线运动,即达到一个定常速度。

业已证

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 图表模板

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2