列管式煤油换热器设计Word格式文档下载.docx

上传人:b****1 文档编号:981507 上传时间:2023-04-29 格式:DOCX 页数:34 大小:506.96KB
下载 相关 举报
列管式煤油换热器设计Word格式文档下载.docx_第1页
第1页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第2页
第2页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第3页
第3页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第4页
第4页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第5页
第5页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第6页
第6页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第7页
第7页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第8页
第8页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第9页
第9页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第10页
第10页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第11页
第11页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第12页
第12页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第13页
第13页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第14页
第14页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第15页
第15页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第16页
第16页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第17页
第17页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第18页
第18页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第19页
第19页 / 共34页
列管式煤油换热器设计Word格式文档下载.docx_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

列管式煤油换热器设计Word格式文档下载.docx

《列管式煤油换热器设计Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《列管式煤油换热器设计Word格式文档下载.docx(34页珍藏版)》请在冰点文库上搜索。

列管式煤油换热器设计Word格式文档下载.docx

化学工业出版,1998

[12]傅启民.化工设计[M].合肥:

中国科学技术大学出版社,2000

[13]董大勤.化工设备机械设计基础[M].北京:

化学工业出版社,1999

(四)进度计划(时间自己确定)

1、查找资料,初步确定设计方案和设计内容

2、根据设计要求进行设计,确定设计说明书初稿

3、撰写设计说明书

4、绘制总装图

摘要在生产中的许多行业中广泛使用各类换热器,是众多行业的通用型设备,对实践生产非常重要。

无论在哪种类型的设备中,必需要有两种或者以上的温度不同的物料,其中一种传出热量的高温物料,降低自身的温度;

另一种流体则温度相对较低,需要吸收热量,升高温度。

本设计的目的是设计年处理能力为10万吨煤油的列管式换热器,达到结构合理、安全可靠、成本低,传热效率高、流体阻力小、制造、安装、检修方便、节省物力和财力的效果。

关键词列管式换热器,煤油,CAD电脑辅助设计

1.绪论

1.1换热器概述

换热器指的是把高温物料的一部分热量通过换热器件传递给低温物料的一种热传递专业生产设备。

在生产的许多行业中广泛使用各类换热器,是众多行业的通用型设备,对实践生产非常重要。

随着我国和谐发展、绿色发展理念的提出,社会生产中对能源利用的要求变得越来越高,因此社会生产中需要更高效能的专业换热设备。

目前,对于换热器的结构设计、性能改进以及工作机理等方面的研究成为热门领域。

同时,一些新颖的、效能高的换热器也相继投入生产。

1.2换热器种类

换热器重点应用在那些消耗能源比较多的生产领域中。

随着人们设计水平的提高,生产中出现了各色的专业换热设备。

可以满足不同的换热介质、不同的生产温度、不同的生产压力、不同的工作状况的换热器,其内部结构样式也有很多不同。

间壁式、流体连接间接式、蓄热式、混合式换热器;

以及冷却器、预热器、过热器、加热器、蒸发器等各种类型是目前换热器主要的一些设计形式。

列管式换热器是这些形式中应用比较广泛、实际利用性最好的一种。

列管式换热器主要是由换热壳体、封头、折流挡板、换热管板、换热管等器件组成。

管程指的是进行热交换的物料在换热管内流动的行程;

而壳程则指的是进行热交换的另一种物料在换热管的外侧流动的行程。

列管式换热器是生产中非常典型的间壁式换热器,因此它的别称是管壳式换热器。

以列管式换热器温差的补偿构造来分类,可以被分出以下类型:

浮头式、固定式换热器、U管式等等。

  优点:

换热器设备多提供的单位体积比传热面积较大,设备结构坚固实用,结构材料可选择的范围较大,操作省时省力,在许多的大型生产装置中被广泛采用。

1.3换热器流动空间的选择原则

1.3.1总体换热原则:

①传热面对侧的传热系数尽量靠近,不要差距太大。

②管、壳程流体的选择要利于设备的清洗和设备的维修。

③降低设备器件由于受热不均而产生不利的热效应。

④有毒性的传热媒介,必需做到严格密封。

⑤尽量不要使用价钱较贵的金属材料,降低生产成本,节约支出。

1.3.2选择管程的流体:

①相对清洁度较低的流体在管字内部的流速较高情况下,悬浮物很难沉积,管字内空间也可以比较方便的清洗。

②体积较小的物料为了可以更好的控制物料,能够得到特定的流动速度,一般管子内面比外面的流动截面要小,对设计成成程性流动也有益处。

③压力较大的流体换热器的换热管耐压力比较强,可以降低换热器壳体对密封性的要求。

④有腐蚀性的流体把管子和管箱做成耐腐蚀的材料器件,把其他所有器件都使用普通材料生产,设备的总体造价较低。

2.换热器设计

在理论知识及专业设计内容的学习后,进行下面的列管式换热器设计。

2.1设计方案的选定

1.选择换热器的类型.

列管式换热器内两种操作物料(煤油和水)温度的转化:

煤油的进口处温度达到150°

C,其出口处的温度则为50°

C;

冷流体物料自来水的进口处的温度是15°

C,而其出口处则为40°

C。

综合考虑清洗、操作、维修等各类因素,确定设计为固定管板式的列管式换热器。

2.选定流动空间及流速

考虑到冷却水易结污垢,为了方便清洗、维护设备,设计管程内走水,壳程内通煤油。

于此时,在换热器壳程内流动的高温煤油可以和空气进行有效的热传递,这在本质上加大了换热器装置本身的热交换强度,提供仪器设备的利用效率。

换热设备选用Φ25×

2.5mm规格的10号碳钢管。

2.2确定物料的物性数据

物料的定性温度以热交换装置内流动物料在设备进口以及出口处的温度的平均值来表示。

物料煤油在壳程中的定性温度是:

T1=150°

C,T2=50°

C,t1=15°

C,t2=40°

C

T=(150+50)/2=100(°

C)

流体物料循环冷却水在换热器中的定性温度:

t=(15+40)/2=27.5(°

已知管程和壳程内水和煤油的物性数据为:

煤油在温度100°

C下的相关物性数据是:

导热系数λo=0.145W/(m·

k)

粘度µ

o=7.05×

10.4N·

s/m2

密度ρo=790kg/m3

定压比热容Co=2.24kJ/(kg·

水在温度27.5°

C的相关物性数据为:

导热系数λi=0.632W/(m·

i=7.19×

密度ρi=990kg/m3

定压比热容Ci=4.189kJ/(kg·

2.3计算换热器的总传热系数

1.热流量

m0=10×

104×

103/(330×

24)=12626.26(kg/h)

Q0=m0CoΔto=12626.26×

2.22×

(150.50)=2.8×

106kJ/h=778.62(kw)

2.平均传热温差

=(Δt1.Δt2)/ln(Δt1/Δt2)=[(150.50).(40.15)]/ln[(150.50)/(40.15)]=54(°

其中Δt1=T1.t2,Δt2=T2.t1。

3.水用量.

Wi=Q0/(CiΔti)=2.8×

106/[4.174×

(40.15)]=67154.6kg/h=7.46kg/s

平均温差

=

=4

=0.259

选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得

=0.83。

=54×

0.83=44°

管子规格

,L=3m。

换热管管束的排列:

采用正三角形。

一壳程四管程的三角形管束排列方式为

2.4传热面积初值的计算

总传热系数选取为K=500W/(m2.°

=35.5m2

单个管子面积

=0.1874m2

换热管个数

=188

换热管中心距离

=1.25×

25=31.35mm,取t=32mm

换热管束的直径

=408mm

中心单行管束

=13

2.5管侧的传热系数

估算壳体的壁温Tw

预设冷凝给热系数是100W/(m2·

K)。

换热器壳程的平均温度:

换热器管程的平均温度:

那么(100.Tw)·

1000=(100.27.5)×

500

所以:

Tw=62.5°

平均冷凝温度

°

76.2°

C时煤油物性:

密度ρo=825kg/m3

定压比热容Co=2.22kJ/(kg·

导热的系数λo=0.130W/(m·

粘度值µ

o=9×

=4.5×

10.3kg/(s·

m)

=1024.6W/(m2·

K)

计算值与假设值基本相同,符合要求。

2.6管内给热系数

换热管的横截面积

m2

换热管内部的流速

2.7传热核算

水污垢的热阻选取为

=3.44×

10.4m2·

K/W

煤油的污垢热阻选取为

=1.72×

选择换热管管壁的导热系数是λ=45W/(m·

那么

与前面所预设的K值基本相同,试差完毕。

2.8换热器壳侧压强降

1)折流板计算

DS=Db+13=408+13=421mm

选DS=400mm

选择折流板为25%圆缺度的圆缺型的折流板。

那么其圆缺高度是:

H=0.25×

400=100mm

所以,折流板的板间距计算得B=0.4DS=0.4×

300=120mm

折流板的板间距选取为100mm

由此,折流板数目计算是NB=L/B-1=3000/100-1=29

2)Kern'

s法计算换热器压降

换热管的横截面面积

那么,换热器壳侧的质量流速为

则换热器壳侧的流体流速为

换热器壳体的当量直径为

其雷诺数为

通过查找壳侧阻力因子图可得

=5.8×

10.2

,流体粘度有关的影响可以被忽视掉,使用进口处的物料流动速度,其压强降低了50%,但

所以,换热器的壳侧压强降是1.2332kPa

2.9换热器管侧压强降

雷诺数为

根据壳侧阻力因子图可以查得

=3.6×

10.3

换热管压强降为:

2.10换热裕度

实际生产所需的换热面积为:

换热器换热裕度由公式可得:

所以,换热面积裕度符合要求,设备可以满足生产要求。

2.11壳程接管计算

选择换热器接管内物料的流动速度u=1.35m/s,因此可以得到它的直径为:

所以选取接管d=80mm。

2.12管程接管计算

接管内流速选取为u=1.35m/s,那么其直径为:

所以选取接管d=150mm。

工作压力:

换热器管程为0.3MPa,换热器壳程为0.3MPa。

标准换热器选取为:

公称直径DN=400mm;

公称压力:

换热器管程为0.3MPa,而其壳程也为0.3MPa;

管程数:

4程;

总管数:

188;

中心一行管数:

13;

管长:

3m;

管程流通面积:

0.0174m2;

计算换热面积:

40.39m2;

2.13壳体和封头的设计

2.13.1壁厚的确定

管壳式换热器外壳主要是由封头、管箱壳体和壳体三部分组成。

生产上,一般用管材或板材来制作换热器的壳体。

对于那些小于400mm直径的设备,壳体往往选择采用管材和管箱。

对于不小于400mm的直径的设备,往往以板材来卷制制作出换热器的壳体。

设备所对应的直径种类要能够与换热器封头、连接法兰的种类相配合,如此可以更好的选择法兰和封头的构型。

往往,在换热器设备小于1000mm的直径情况下,100mm的差距被当做系列间的均等差;

当设备大于1000mm的直径情况下,200mm被当做是一个系列的均等差值。

但是如若期望采用旋压式的封头,那么能够选取100mm当做直径系列的一个均等差。

表2.13.1碳素钢或低合金钢圆筒的最小厚度

公称直径

400~≤700

>

800~≤1000

1100~≤1500

1600~≤200

2000~≤2600

浮头式

8

10

12

14

16

U型管式

固定管板式

6

表2.13.2壳体、管箱壳体厚度

DN,

mm

材料

壳程或管程公称压力PN,MPa

0.6

1.0

1.6

2.5

4.0

6.4

厚度,mm

400

Q235.A/B/C

——

16MnR

1Cr18Ni9Ti

5

18

根据先前的计算,换热器的壳体和管箱壳体的外围直径是400mm。

因此可以选Q235.A碳素钢板材质来制作器件。

根据有关的资料记录,在100°

C下[σ]t=113MPa。

接下来进行设备壳体壁厚度的设计。

如若取设备的工作压力与其设计的压力数值相等,那么pc=0.3MPa,此种设备的焊接接头的系数为φ=0.83。

壁厚计算为

壁厚设计由于煤油是具有低腐蚀度的物料,那么选腐蚀裕量C2=1mm。

所以

同时壁厚的负偏差是C1=0.5mm,所以Sd+C1=4.42mm。

名义上的壁厚为

,所以选择名义上的壁厚是5mm。

由以上所列的图表可以做出分析,6mm的大小能够被用来当做设备壳体以及管箱壳体的壁的厚度值,同时以前面所列的公称压力和设备所用的材料来分析的话,最后取8mm当做设备的壳体以及管箱壳体的适宜厚度。

因此,所设计设备的壳体的单位长度是120kg的重量,单位长度是0.283m3的体积。

2.13.2封头的选取:

椭圆形的封头JB/T4737.95

高ho的小圆筒(直边)和长半轴、短半轴大小依次为a,b的半椭圆一起组成了换热设备的椭圆形封头。

为了防止边缘应力影响封头与筒体间的环向焊缝以及保持封头的生产制造的品质,所以设置了直边,这也是它的最大作用。

设备的椭圆形封头壁的厚度公式计算为:

标准椭圆形封头的K值为1,因此

表2.13.3不同封头的厚度

DN,mm

材质

壳程或管程的公称压力PN,单位MPa

0.5

1.2

1.5

2.4

4.1

6.5

表2.13.4各种椭圆形封头的ho(mm)

封头材料

碳素钢、普低钢、复合钢板

不锈钢

封头壁厚

4~8

10~18

≥20

3~9

直边高度

25

40

50

依据以上相关资料和本设计的实际需求考虑,换热器封头选择为DN=400mm,设备的制作材质使用Q235.A,换热器的封头的厚度值选择为8mm,直边ho选择为25mm的大小。

2.14管板与换热管

2.14.1管板

管板作为管壳式换热器的其中非常关键的器件,其不光与管子和壳体等处接通,同时作为换热器中非常关键的耐压器件。

面对管板的设置,不光要符合强度的硬性要求,还应该充分的考量它的内部结构。

1)管板结构

以下是固定管板式换热器同时作为法兰的管板,可以观察得到,一个明显的凸起的面是管板和法兰的连接密封面,在器件中的隔板槽拐角的地方,倒角为10×

45°

图2.14.1换热器的整体管板构造图2.14.2换热器的堆焊管板构造

图2.14.1是由碳钢、不锈钢、低合金钢共同打造的一个联合管板,其中不锈钢管板的隔板槽是11mm的宽,而碳钢、低合金钢管板的为12mm大小,管板的槽深往往大于4mm。

图片2.14.2为采用堆焊的不锈钢管板,首先是堆焊,再来钻管孔。

采用堆焊的不锈钢,提倡使用带级堆焊。

2)管板的最小厚度

如果换热器的管板和它的换热管采用胀接,换热器管板的最小厚度(腐蚀裕度不算在内)要符合表格2.14.1。

表2.14.1胀接情况的管板最小厚度

换热管外径值do/mm

≤24

24~<

55

≥55

最小厚度δmin

适用具有危险性的地方

≥do

适用普通平常的地方

≥0.85do

≥0.80do

≥0.75do

3)管板尺寸

换热器管板的大小如表所示。

根据国标GB151.1999《管壳式换热器》,以碳钢、低合金钢为材料制作的设备管板(16Mn锻件)在PN≤1MPa、DN=600情况下的尺寸大小,管板与换热管仅可以以焊接的方式来连接。

2.14.2换热管

1)管程分程

根据实际需要,选取四程。

2)换热管的规格和尺寸偏差

管子的类别和大小偏差见表2.14.2。

表2.13.2管子的类别和大小偏差

换热管

标准

管子规格,mm

高精度、较高精度

普通精度

外径

厚度

外径偏差

壁厚偏差

碳钢、低合金钢

GB/T8163

GB9948

≥14~30

2~2.5

±

0.20

+12%

.10%

0.40

+15%

30~50

2.5~3.5

0.30

0.45

57

3.5

0.8%

10%

1.0%

选取10号碳钢为本设计的换热管,L=3000mm;

表2.14.310号碳钢的相关应力

型号

规格

(mm)

常温压强指示

在以下温度(°

C)下的应力大小(MPa)

σb

(MPa)

σt

≤20

100

150

GB8163

≤10

335

205

112

108

≤16

GB6479

17~40

195

110

104

3)换热管的排列

(1)换热管的排列型式

换热管的排列型式主要有以下四种。

图2.14.3换热管的排列型式

图2.13.3中(a)和(d)两类排列,在管距一样的情况下的挡板,流体的截面相对于(b)和(c)两类要小一些,可以更好的增加流量,所以在理论上更加的合理、更加的科学。

本设计综合分析以上因素,煤油换热器采用(a)类的排列。

(2)换热管中心距

换热管中心的距离,最小应为1.25倍管直径,热交换管的中心距分区支管,应最小传热管中心距与厚度的挡板槽密封面,以保证在膨胀管桥具有足够的强度。

设计中能够采用焊接的技术来连接换热器器件,管的间距可以更加的小,但为了能够确保壳程清洗,清洗的通道定为6mm大小。

当外壳用于蒸发过程,为了使气相更好的逃脱,管间距可为1.4倍管外径大。

依据制作规范,热管直径为25mm大小的管,设备的管中心距为32mm,位于换热管中心两侧位置的隔板槽为44mm大小。

(3)布管限定圆DL

布管限定、圆确定等参数可以依据下面的资料来制定。

表2.14.5b的值

Di

b

<

1000

3

1000~2600

4

表2.14.6bn、b1的值

bn

b1

≤700

≥10

700

≥13

表中:

b的值、b1的值、bn为垫片厚度,分别按上面的表取值;

b2=bn+1.5(mm);

b3为固定管板换热器管束最外层换热管外表面至壳体内壁的最短距离,b3=0.25d且不小于8mm。

D为换热管外径,mm;

Di为换热管筒体内直径,mm;

DL为布管限定圆直径,mm。

(a)(b)

图2.14.4布管示意图

根据前面的条件可得:

b3=0.35d=0.35×

25=6.25mm

那么,DL=Di.2b3=500.2×

6.35=587.5mm。

除了考虑有限循环布管直径,管换热器和侵蚀之间的距离需要考虑。

通常,换热管外表面和相邻的抗冲刷面板之间的距离,最小。

(4)换热管排列原则

以完全对称的原则来排列换热管得所有管束。

可以都布满换热管的领域应该是符合换热管与防冲板的距离规则和布管限定圆直径的数值。

尽可能的把拉杆平均的安置在管束的外侧一面。

拉杆能够被安排在折流板缺边的位置上,而且其间的远近不可以大过700mm的大小。

换热器折流板的缺边和换热器拉杆中心处之间的距离要保持在换热器的换热管中心距的

(0.5~1.5)区间之内。

那些多管程的设备的各程管数的相对误差值也理应维持在10%的范围之内,同时也要维持大小等值,而误差绝对不能够超越20%的最大限制。

而相对误差的公式为:

式中:

Ncp——各程平均数,

——各程中最小(或最大)管数。

188

计算的平均每程换热器的管数:

Ncp=47

各程管数:

=51(3程),

=60(1程)

中心一行的管数Nr=587.5/32=18

采用正三角形排列,层数为8层

2.15壳体与管板、管板与法兰及换热管的连接

对不可拆式的换热器来说,管壳板的焊接式连接。

由于壳壁的厚度,类型,直径,和管板(如管板法兰),所以必须焊接方法和焊接接头在不同的地方。

2.15.1壳体与管板的连接结构

因为温度的差异,压力和材料的性质,因此固定管板与壳体的类型的要求是不一样的。

对于非固定管板换热器的可拆卸的,从结构上看有两种类型,一是管板法兰(见图2.14.5(a)),另一个是一个夹式固定管板。

此种列管式换热器使用碳钢为其所有材质,适宜采用同时兼作法兰的管板,换热器圆筒与它所用的连接结构形式为:

图2.14.5管板圆筒(可以兼做法兰)的构造

2.15.2管板与法兰的连接

连接管板,法兰,当管板法兰,法兰连接管箱和一般固定管板换热器。

固定管板换热装置的管板本身就能够当做一个法兰的连接类型,这相对要简单一些,不光是应该满足生产操作的工艺条件,对于选一些密封型,其还应该要依据操作的压力和温度选择。

结构式法兰的选择。

如图所示的2.14.6

图2.14.6管板的连接构造(固定管板式换热器)

(a)用在管侧和壳侧压力为0.3MPa的结构,而不是在气密性要求。

2.15.3管子与管板的连接

换热管子与换热设备管板间的构

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 临时分类 > 批量上传

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2