基于AT89C52单片机的数字时钟系统设计.docx

上传人:b****8 文档编号:9930142 上传时间:2023-05-22 格式:DOCX 页数:63 大小:724.20KB
下载 相关 举报
基于AT89C52单片机的数字时钟系统设计.docx_第1页
第1页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第2页
第2页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第3页
第3页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第4页
第4页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第5页
第5页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第6页
第6页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第7页
第7页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第8页
第8页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第9页
第9页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第10页
第10页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第11页
第11页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第12页
第12页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第13页
第13页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第14页
第14页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第15页
第15页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第16页
第16页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第17页
第17页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第18页
第18页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第19页
第19页 / 共63页
基于AT89C52单片机的数字时钟系统设计.docx_第20页
第20页 / 共63页
亲,该文档总共63页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于AT89C52单片机的数字时钟系统设计.docx

《基于AT89C52单片机的数字时钟系统设计.docx》由会员分享,可在线阅读,更多相关《基于AT89C52单片机的数字时钟系统设计.docx(63页珍藏版)》请在冰点文库上搜索。

基于AT89C52单片机的数字时钟系统设计.docx

基于AT89C52单片机的数字时钟系统设计

PROTUES仿真图

protel99e硬件原理图

元器件清单

有需要的加我qq981196812

下面是正文部分

 

1引言

人类的生活和工作均离不开时钟。

从古代的滴漏更鼓到近代的机械钟,从电子表到目前的数字时钟,为了准确的测量和记录时间,人们一直在努力改进着计时工具。

钟表的数字化,大力推动了计时的精确性和可靠性。

1.1课题背景

近些年,随着科技的发展和社会的进步,人们对数字钟的要求也越来越高,传统的时钟已不能满足人们的要求。

多功能数字钟不管在性能还是在样式上都发生了质的变化,有电子闹钟、数字闹钟等等。

数字钟成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便[1]。

在日常生活和工作中,我们常常用到定时控制,如扩印过程中的曝光定时等。

早期常用的一些时间控制单元都使用模拟电路设计制作的,其定时准确性和重复精度都不是很理想,现在基本上都是基于数字技术的新一代产品,随着单片机性能价格比的不断提高,新一代产品的应用也越来越广泛,大可构成复杂的工业过程控制系统,完成复杂的控制功能。

小则可以用于家电控制,甚至可以用于儿童电子玩具。

它功能强大,体积小,质量轻,灵活好用,配以适当的接口芯片,可以构造各种各样、功能各异的微电子产品[2]。

随着电子技术的飞速发展,家用电器和办公电子设备逐渐增多,不同的设备都有自己的控制器,使用起来很不方便。

根据这种实际情况,设计了一个单片机多功能数字时钟,它可以避免多种控制器的混淆,利用一个控制器对多路电器进行控制,同时又可以进行时钟校准和定点打铃。

它可以执行不同的时间表(考试时间和日常作息时间)的打铃,可以任意设置时间。

这种具有人们所需要的智能化特性的产品减轻了人的劳动,扩大了数字化的范围,为家庭数字化提供了可能。

电子钟是一种利用数字电路来显示秒、分、时的计时装置,与传统的机械钟相比,它具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛应用。

随着人们生活环境的不断改善和美化,在许多场合可以看到数字电子钟。

在城市的主要营业场所、车站、码头等公共场所使用LCD数字电子钟已经成为一种时尚。

但目前市场上各式各样的LCD数字电子钟大多数用全硬件电路实现,电路结构复杂,功率损耗大等缺点,因此有必要对数字电子钟进行改进。

1.2数字时钟的发展现状

几种常用数字时钟设计方案:

a)基于微机系统的数字时钟设计

计时单元由定时/计数器8253的通道0来实现。

定时采用硬件计数和软件技术相结合的方式,即通过8253产生一定的定时时间,然后再利用软件进行计数,从而实现24小时制定时。

8253定时时间到了之后产生中断信号,8253在中断服务程序中实现时、分、秒的累加。

时间显示采用实验平台上的6个LED数码管分别显示时、分、秒,采用动态扫描方式实现。

校时和闹铃定时通过键盘电路和单脉冲产生单元来输入。

按键包括校时键、闹钟定时键、加1键和减1键等。

报警声响用蜂鸣器产生,将蜂鸣器接到8255的一个端口,通过输出电平的高低来控制蜂鸣器的发声。

系统硬件设计主要利用微机实验平台上的电路模块。

硬件电路主要由键盘电路、单脉冲产生单元、8253定时计数器、8255并行接口单元、8259中断控制器、LED显示电路和蜂鸣器电路等等。

b)基于VHDL的数字时钟设计

基于VHDL语言,用Top_Down的思想进行设计。

用CN6无进位六进制计数器选择数码管的亮灭以及对应的数,循环扫描显示,用SEL61六选一选择器选择给定的信号输出对应的数送到七段码译码器。

K4模块进行复位,设置小时和分,输出整点报时信号和时,分,秒信号。

单元模块设计部分分三个部分,介绍数字钟选择显示数码管和对应的数模块CN6,信号选择模块SEL61,七段码译码器模块DISP和复位,秒,分,时显示,设置模块。

c)基于单片机数字时钟设计

基于单片机的数字时钟设计是模块化设计,以单片机做主控制模块,控制时钟芯片、温度传感器芯片等,又将数据控制输出到显示模块。

基于MCS-51单片机的数字时钟系统具有显示准确、直观、易于调整等特点。

单片机自诞生以来给全世界人类的生活和工作起到了剧烈的变化,而MCS-51单片机是我国使用最早、最易掌握和应用的一款单片机。

通过该系统的设计,对单片机的原理和功能有个比较系统和全面的掌握,初步学习到有关工程设计的方法和思路。

这样以后的就业面会更加宽广,也可以满足当今社会对单片机开发人才的大量需求。

目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。

导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,录象机、摄象机,以及程控玩具、电子宠物等等,这些都离不开单片机。

更不用说自动控制领域的机器人、智能仪表、医疗器械了。

因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。

单片机在多功能数字钟中的应用已是非常普遍的,人们对数字钟的功能及工作顺序都非常熟悉。

但是却很少知道它的内部结构以及工作原理。

由单片机作为数字钟的核心控制器,可以通过它的时钟信号进行时实现计时功能,将其时间数据经单片机输出,利用显示器显示出来。

通过键盘可以进行定时、校时功能。

输出设备显示器可以用液晶显示技术和数码管显示技术。

综上所述此基于单片机的数字时钟具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。

值得我们进行深入的研究和了解。

1.3课题研究的意义

多功能数字时钟的用途十分广泛,只要有计时的存在,便要用到数字时钟的原理及结构;同时在日期中,它以其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费者的喜爱。

随着人类科技文明的发展,人们对于时钟的要求在不断提高。

时钟已不仅仅被看出一种用来显示时间的工具,在很多实际应用中它还需要能够实现更多其它的功能。

高精度、多功能、小体积、低功耗,是现代时钟发展的趋势。

在这种趋势下,时钟的数字化、多功能化已经成为现在时钟生产研究的主导设计方向[3]。

1.4本课题研究内容

本论文主要研究基于单片机的数字时钟设计。

当程序执行后,显示即时时间、年月日、星期、温度。

设置4个操作键:

K1:

设置键;K2:

上调键;K3:

下调键;K4:

确定键。

本设计的主要内容:

1、了解单片机技术的发展现状,熟悉数字时钟各模块的工作原理;2、选择适当的芯片和元器件,确定系统电路,绘制电路原理图,尤其是各接口电路;3、熟悉单片机使用方法和C语言的编程规则,编写出相应模块的应用程序;4、分别在各自的模块中调试出对应的功能,在Proteus软件上进行仿真。

5、做出实物,调试出相应功能。

2系统设计

2.1系统构成

设计基于单片机的数字时钟和数字温度计,并将时间和温度直接的显示出来。

设计初步思路:

本设计由单片机、时钟电路、温度检测电路、显示电路、键盘接口5个模块组成。

如下图2.1所示,

 

图2.1系统框图

2.2模块芯片方案的选择

2.2.1单片机主控制部分的方案

方案一

用凌阳16位单片机设计。

凌阳16位单片机有丰富的中断源和时基,方便本实验的设计。

它的准确度相当高,并且C语言和汇编兼容的编程环境也很方便来实现一些递归调用。

但是,在控制与显示的结合上有些复杂,显示模组资源相对有限,而且单片机的稳定性不是很高。

方案二

主控芯片使用51系列AT89C52单片机,片内ROM全都采用FlashROM,能以3V的超底压工作,同时也与MCS-51系列单片机完全该芯片内部存储器为8KBROM存储空间,同样具有89C51的功能,且具有在线编程可擦除技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片多次拔插,所以不会对芯片造成损坏。

2.2.2时钟芯片的方案

方案一

直接采用单片机定时计数器提供秒信号,使用程序实现年、月、日、星期、时、分、秒计数。

采用此种方案虽然减少芯片的使用,节约成本,但是,实现的时间误差较大。

所以不采用此方案。

方案二

采用DS1302作为主要计时芯片,可以做到计时准确。

更重要的是,DS1302可以在很小电流的后备电源(2.5~5V电源,在2.5V时耗电小于300nA)下继续计时,停电后时钟无需重新调整,并可编程选择多种充电电流来对后备电源进行慢速充电,可以保证后备电源基本不耗电,阳历、星期与年月日自动对应。

2.2.3测温部分的方案

方案一

使用热敏电阻作为传感器,用热敏电阻与一个相应阻值电阻相串联分压,利用热敏电阻阻值随温度变化而变化的特性,采集这两个电阻变化的分压值,并进行A/D转换。

此设计方案需用A/D转换电路,增加硬件成本而且热敏电阻的感温特性曲线并不是严格线性的,会产生较大的测量误差。

方案二

与前面相比,采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最大分辨率可达0.0625℃。

采用数字式温度传感器DS18B20,此类传感器为数字式传感器而且仅需要一条数据线进行数据传输,易于与单片机连接,可以去除A/D模块,降低硬件成本,简化系统电路。

另外,数字式温度传感器还具有测量精度高、测量范围广等优点。

2.2.4显示部分的方案

方案一

采用LED数码管动态扫描,虽然LED数码管价格适中,LED数码管显示容量有限,且动态扫描需要占用大量单片机时间,无法做到实时显示。

所以在此设计中也不采用LED数码管。

方案二

采用LCD液晶显示屏,液晶显示屏的显示功能强大,可显示大量文字,图形,具有超精致影像画质、十足平面显示、节省空间、节省能源等优点。

综上各方案所述,对此次设计的方案选定:

采用AT89C52作为主控制芯片,DS1302时钟芯片计时,DS18B20采集温度,LCD1602作为显示模块。

3硬件设计

本电路是以AT89C52单片机为控制核心,该芯片具有在线编程功能,功耗低,能在3.3V的超低压下工作;时钟芯片采用DS1302,它是一款高性能、低功耗、自带RAM的实时时钟芯片,具有使用寿命长,精度高和功耗低等特点,同时具有掉电自动保存功能,可以对年、月、日、星期、时、分、秒进行计时,具有闰年补偿功能,其工作电压为2.5V~5.5V;温度检测模块由DS18B20构成,它采用独特的单线接口仅需一个端口引脚进行通讯,具有测量精度高、测量范围广等优点,其测温范围在-55~+125℃,工作电压为3v~5.5v;显示部份使用1602液晶显示屏来实现,该显示屏具有低功耗、寿命长、可靠性高的特点,其工作电压为5v[4]。

3.1单片机模块的设计

本设计中的单片机主要负责对外设的控制和各个功能模块间的协调,没有复杂的数据计算,因此8位的51系列单片机足以胜任。

51单片机以其低廉的价格以及出色的性能成了很多控制系统的首选。

它具有丰富的内部资源,较大的数据,程序存储区。

一个典型的单片机最小系统一般由时钟电路,复位电路,电源指示灯和尾部扩展接口等部分组成,本系统也不例外,当单片机具备了这些最基本的条件后,就可以正常工作了。

单片机最小系统如图3.1所示,单片机的XTAL1和XTAL2引脚用于连接晶振电路。

XTAL1接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出。

RESET为复位引脚,连接复位电路,它用于对单片机进行初始化。

复位电路包括复位电容,复位电阻和复位开关[5]。

图3.1单片机最小系统

3.1.1AT89C52单片机简介

AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用.

a)主要功能特性

1)兼容MCS51指令系统;2)8k可反复擦写(大于1000次)FlashROM;3)32个双向I/O口;4)256x8bit内部RAM;5)3个16位可编程定时/计数器中断;6)时钟频率0-24MHz;7)2个串行中断,可编程UART串行通道;8)2个外部中断源,共6个中断源;9)2个读写中断口线,3级加密位;10)低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;11)有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品.

b)管脚说明

VCC:

电源电压GND:

接地

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出[6]。

3.1.2复位电路的设计

复位电路是使单片机的CPU或系统中的其他部件处于某一确定的初始状态,并从这上状态开始工作。

a)单片机常见的复位电路

通常单片机复位电路有两种:

上电复位电路,按键复位电路。

上电复位电路:

上电复位是单片机上电时复位操作,保证单片机上电后立即进入规定的复位状态。

它利用的是电容充电的原理来实现的。

按键复位电路:

它不仅具有上电复位电路的功能,同时它的操作比上电复位电路的操作要简单的多。

如果要实现复位的话,只要按下RESET键即可。

它主要是利用电阻的分压来实现的

在此设计中,采用的按键复位电路。

按键复位电路如图3.2所示。

图3.2复位电路

b)复位电路工作原理

上电复位要求接通电源后,单片机自动实现复位操作。

上电瞬间RESET引脚获得高电平,随着电容的充电,RERST引脚的高电平将逐渐下降。

RERST引脚的高电平只要能保持足够的时间(2个机器周期),单片机就可以进行复位操作。

上电与按键均有效的复位电路不仅在上电时可以自动复位,而且在单片机运行期间,利用按键也可以完成复位操作。

3.1.3晶振电路的设计

晶振电路用于产生单片机工作所需要的时钟信号,而时序所研究的是指令执行中各信号之间的相互关系。

单片机本身就如一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地工作。

通常在引脚XTALl和XTAL2跨接石英晶体和两个补偿电容构成自激振荡器,如图3.3中Y1、C1、C2。

可以根据情况选择6MHz、12MHz或24MHz等频率的石英晶体,补偿电容通常选择30pF左右的瓷片电容[7]。

图3.3时钟振荡电路

3.2时钟电路模块的设计

DS1302是DALLAS公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31字节静态RAM,通过简单的串行接口与单片机进行通信。

图3.4所示为DS1302的引脚排列,其中VCC1为后备电源,VCC2为主电源。

DS1302由VCC1或VCC2两者中的较大者供电。

所以在主电源关闭的情况下,也能保持时钟的连续运行。

X1和X2是振荡源,外接32.768KHz晶振用来为芯片提供计时脉冲。

RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。

RST输入有两种功能:

首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。

当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。

如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。

上电行动时,在VCC大于等于2.5V之前,RST必须保持低电平。

在SCLK为低电平时,才能将RST置为高电平,I/O为串行数据输入端(双向)。

SCLK始终是输入端[8]。

图3.4DS1302的硬件接线图

时钟芯片DS1302的工作原理:

a)DS1302的控制字节

DS1302控制字节的高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出

b)数据输入输出(I/O)

在控制指令字输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。

同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。

c)DS1302的寄存器

DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式。

“CH”是时钟暂停标志位,当该位为1时,时钟振荡器停止,DS1302处于低功耗状态;当该位为0时,时钟开始运行。

“WP”是写保护位,在任何的对时钟和RAM的写操作之前,“WP”必须为0。

当“WP”为1时,写保护位防止对任一寄存器的写操作。

此外,DS1302还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。

时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器内容。

DS1302与RAM相关的寄存器分为两类:

一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;另一类为突发方式下的RAM寄存器,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。

3.3温度传感器电路设计

本设计的测温元件采用DS18B20数字温度传感器,该产品采用美国DALLAS公司生产的DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

使用DS18B20数字温度传感器,可以感测周围环境温度变化,并将数据传送给单片机进行处理,实现周围环境实时温度的监测。

DS18B20具有独特的单线接口,只需1个接口引脚即可通信;多点能力使分布式温度检测应用得以简化;不需要外部元件;可用数据线供电,不需备份电源;测量范围从-55℃至+125℃,增量值为0.5℃。

等效的华氏温度范围是-67°F至257°F;以9位数字方式读出温度;在1秒(典型值)内把温度变换为数字;用户可定义的,非易失性的温度告警设置;告诫搜索命令识别和寻址温度在编定的极限之外的器件(温度告警情况);应用范围包括恒温控制,工业系统,消费类产品,温度计或任何热敏系统[9]。

下图(图3.5)为DS18B20硬件接线图

图3.5DS18B20引脚接线

引脚说明:

GND为接地引脚;DQ为数据输入输出脚。

用于单线操作,漏极开路;VCC接电源正;

a)DS18B20的主要特性

1)适应电压范围更宽,电压范围:

3.0~5.5V,在寄生电源方式下可由数据线供电。

2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。

4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。

5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。

6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。

8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。

9)负压特性:

电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

DS18B20只需要接到控制器(单片机)的一个I/O口上,由于单总线为开漏所以需要外接一个4.7K的上拉电阻。

DS18B20数据线是开漏结构,这就意味着,在没有数据的时候,总线处于什么样的状态是不确定的.加一个上拉电阻就可以使总线在空闲的时候处于高电平状态.

b)DS18B20的供电方式

DS18B20的供电方式有两种:

寄生电源供电方式和外部电源供电方式。

本设计采用外部电源供电方式(如图3.5),DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度。

外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。

3.4独立式键盘设计

实现键盘控制的方法有多种,它可以用FPGA来进行控制,也可以用单片机来进行控制。

在本系统中,我们采用了单片机来进行控制,因为单片机可以很好的解决键抖动。

由若干个按键组成一个键盘,其电路结构可分为独立式键盘和矩阵式键盘两种。

独立式键盘每个键单独占用一根I/O口线,每根I/O口线上的按键工

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 临时分类 > 批量上传

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2