数字摄影测量知识点总结.docx

上传人:b****0 文档编号:10092411 上传时间:2023-05-23 格式:DOCX 页数:29 大小:281.58KB
下载 相关 举报
数字摄影测量知识点总结.docx_第1页
第1页 / 共29页
数字摄影测量知识点总结.docx_第2页
第2页 / 共29页
数字摄影测量知识点总结.docx_第3页
第3页 / 共29页
数字摄影测量知识点总结.docx_第4页
第4页 / 共29页
数字摄影测量知识点总结.docx_第5页
第5页 / 共29页
数字摄影测量知识点总结.docx_第6页
第6页 / 共29页
数字摄影测量知识点总结.docx_第7页
第7页 / 共29页
数字摄影测量知识点总结.docx_第8页
第8页 / 共29页
数字摄影测量知识点总结.docx_第9页
第9页 / 共29页
数字摄影测量知识点总结.docx_第10页
第10页 / 共29页
数字摄影测量知识点总结.docx_第11页
第11页 / 共29页
数字摄影测量知识点总结.docx_第12页
第12页 / 共29页
数字摄影测量知识点总结.docx_第13页
第13页 / 共29页
数字摄影测量知识点总结.docx_第14页
第14页 / 共29页
数字摄影测量知识点总结.docx_第15页
第15页 / 共29页
数字摄影测量知识点总结.docx_第16页
第16页 / 共29页
数字摄影测量知识点总结.docx_第17页
第17页 / 共29页
数字摄影测量知识点总结.docx_第18页
第18页 / 共29页
数字摄影测量知识点总结.docx_第19页
第19页 / 共29页
数字摄影测量知识点总结.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

数字摄影测量知识点总结.docx

《数字摄影测量知识点总结.docx》由会员分享,可在线阅读,更多相关《数字摄影测量知识点总结.docx(29页珍藏版)》请在冰点文库上搜索。

数字摄影测量知识点总结.docx

数字摄影测量知识点总结

第一章绪论

摄影测量及遥感的概念:

摄影测量及遥感是对非接触传感器系统获得的影像及其数字表达进行记录、量测和解译,从而获得自然物体和环境的可靠信息的一门工艺、科学和技术。

摄影测量及遥感的主要特点:

①在像片上进行量测和解译;

②无需接触物体本身,较少受自然和地理条件限制;

③可摄得瞬间的动态物体影像;

④像片及其它各类影像提供物体的大量几何信息和物理信息

摄影测量学的三个发展阶段:

①模拟摄影测量(1851-1970)

利用光学/机械投影方法实现摄影过程的反转。

用两个/多个投影器模拟摄影机摄影时的位置和姿态,构成及实际地形表面成比例的几何模型,通过对该模型的量测得到地形图和各种专题图。

②解析摄影测量(1950-1980)

以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式来研究和确定被摄物体的形状、大小、位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。

③数字摄影测量(1970-现在)

基于摄影测量的基本原理,通过对所获取的数字/数字化影像进行处理,自动(半自动)提取被摄对象用数字方式表达的几何及物理信息,从而获得各种形式的数字产品和目视化产品。

摄影测量三个发展阶段的特点:

摄影测量分类:

按距离远近:

航天摄影测量、航空摄影测量、地面摄影测量、近景摄影测量、显微摄影测量

按用途:

地形摄影测量、非地形摄影测量

按处理手段:

模拟摄影测量、解析摄影测量、数字摄影测量

单像摄影测量的理论基础:

共线方程、共面条件

摄影测量的任务:

•地形测量领域

–各种比例尺的地形图、专题图、特种地图、正射影像地图、景观图。

–建立各种数据库。

–提供地理信息系统和土地信息系统所需要的基础数据。

•非地形测量领域

–生物医学

–公安侦破

–古文物、古建筑

–建筑物变形监测

–军事侦察

–矿山工程

第二章单张航摄像片解析

航摄机主距:

航空摄影机物镜中心至底片面的距离是固定值,常用f表示。

摄影机的主距分为:

长焦距(主距≥200mm)

中焦距(主距100~200mm)

短焦距(主距≤l00mm)

对应的像场角分为:

常角(75°以下)宽角(75°~100°)特宽角(100°以上)

摄影比例尺:

是指航摄像片上一线段为l及地面上相应线段的水平距L之比。

由于摄影像片有倾角,地形有起伏,所以摄影比例尺在像片上处处不相等。

我们一般指的摄影比例尺,是把摄影像片当作水平像片,地面取平均高程,这时像片上的一线段l及地面上相应线段的水平距L之比,称为摄影比例尺1/m,即

式中,f为航摄机主距,H为平均高程面的航摄高度,称为航高。

空中摄影要按航摄计划要求进行。

在整个摄区,飞机要按规定的航高和设计的方向呈直线飞行,并保持各航线的相互平行。

-摄影比例尺

-像片重叠度:

同一条航线内相邻像片之间的影像重叠称为航向重叠,重叠部分及整个像幅长的百分比称为重叠度,一般要求在60%以上。

相邻航线的重叠为旁向重叠,旁向重叠度保持在24%以上。

保证像片立体量测及拼接。

-空间摄影基线:

控制像片重叠度时,将飞机视为匀速运动,每隔一定空间距离拍摄一张像片,摄站的间距称为空间摄影基线B。

-航线弯曲度:

航线弯曲度是指偏离该直线最远的像主点到该直线垂距及航带两端像主点之间的直线距离的比,一般采用百分数表示.航线的弯曲会影响到航向重叠、旁向重叠的一致性,如果弯曲太大,则可能会产生航摄漏洞,甚至影响摄影测量的作业。

因此,航线弯曲度一般规定不得超过3%;

-像片旋角:

像片上相邻像主点连线及同方向框标连线间的夹角称为像片旋角;

-像片倾角:

空中摄影采用竖直摄影方式,即摄影瞬间摄影机的主光轴近似及地面垂直,它偏离铅垂线的夹角应小于3度,夹角称为像片倾角。

航摄像片上特殊的点、线:

设地面为E,像片为P(即像平面)两平面相交于直线TT,称为迹线,即透视轴,平面夹角为像片倾角。

摄影中心:

影像是由地面上各点发出的光线通过航空摄影机物镜投射到底片感光层上形成的,这些光线会聚于物镜中心S,称为摄影中心。

中心投影

像主点:

通过摄影中心S,垂直于像平面P的直线SO称为主光轴,它及像平面P的交点o称为像主点。

So称为航摄机的主距f。

像底点:

通过摄影中心S作地平面E的铅垂线SN,称为主垂线,主垂线SN及像平面P的交点n称为像底点,及地面E的交点N称为地底点。

SN称为摄影航高H。

等角点:

主光轴SoO及主垂线SnN所夹的角a,称为像片倾斜角。

a角的二等分线及像片交点c称为等角点。

及E面的交点C称为等角点的共轭点。

主纵线:

通过主垂线SnN及主光轴SoO作一平面W,此平面称为主垂面,既垂直于像平面P,又垂直于地面E。

主垂面W及像平面P的交线VV,称为主纵线。

主垂面W及地面E的交线V0V0,称为摄影方向线。

摄影测量常用的坐标系:

像方空间坐标系(描述像点的位置)

——像平面坐标系

像平面坐标系用以表示像点在像平面上的位置,通常采用右手坐标系,x,y轴的选择按需要而定,在解析和数字摄影测量中,常根据框标来确定像平面坐标系,称为像框标坐标系。

在摄影测量解析计算中,像点的坐标应采用以像主点为原点的像平面坐标系中的坐标。

为此,当像主点及框标连线交点不重合时,须将像框标坐标系平移至像主点。

当像主点在像框标坐标系中的坐标为(x0,y0)时,则量测出的像点坐标x,y化算到以像主点为原点的像平面坐标系中的坐标为(x—x0,y—y0)。

——像空间坐标系

为了便于进行空间坐标的变换需要建立起描述像点在像空间位置的坐标系,即像空间坐标系。

以摄影中心S为坐标原点,x,y轴及像平面坐标系的x,y轴平行,z轴及主光轴重合,形成像空间右手直角坐标系S-xyz。

像点坐标表示为(x,y,-f)。

像空间坐标系随着像片的空间位置而定,每张像片的像空间坐标系不统一。

——像空间辅助坐标系

此坐标系的原点为摄影中心S,坐标轴系的选择视需要而定,通常有三种选取方法。

其一是取铅垂方向为Z轴,航向为X轴,构成右手直角坐标系,见图(a)。

其二是以每条航线内第一张像片的像空间坐标系作为像空间辅助坐标系,见图(b)。

其三是以每个像片对的左片摄影中心为坐标原点,摄影基线方向为X轴,以摄影基线及左片主光轴构成的面作为XZ平面,构成右手直角坐标系,如图(c)。

用S-XYZ表示。

物方空间坐标系(描述地面点的位置)

——摄影测量坐标系

将像空间辅助坐标系S-XYZ沿着Z轴反方向平移至地面点P,得到的坐标系P-XpYpZp称为摄影测量坐标系。

由于它及像空间辅助坐标系平行,因此很容易由像点的像空间辅助坐标求得相应的地面点的摄影测量坐标。

——地面测量坐标系

地面测量坐标系通常指地图投影坐标系,也就是国家测图所采用的高斯—克吕格3°带或6°带投影的平面直角坐标系和高程系,两者组成的空间直角坐标系是左手系用T-XtYtZt表示。

摄影测量方法求得的地面点坐标最后要以此坐标形式提供给用户使用。

——地面摄影测量坐标系

由于摄影测量坐标系采用的是右手系,而地面测量坐标系采用的是左手系,这给由摄影测量坐标到地面测量坐标的转换带来了困难,为此,在摄影测量坐标系及地面测量坐标系之间建立一种过渡性的坐标系,称为地面摄影测量坐标系,用D-XtpYtpZtp表示,其坐标原点在测区内的某一地面点上,Xtp轴及Xp轴方向大致一致,但为水平,Ztp轴铅垂。

构成右手直角坐标系。

摄影测量中,首先将摄影测量坐标转换成地面摄影测量坐标,最后再转换成地面测量坐标。

航摄像片的内、外方位元素:

确定航空摄影瞬间摄影中心及像片在地面设定的空间坐标系中的位置及姿态,描述这些位置和姿态的参数称为像片的方位元素。

——内方位元素:

表示摄影中心及像片之间相关位置的参数

包括三个参数,即摄影中心S到像片的垂距(主距)f及像主点O在像框标坐标系中的坐标x0,y0。

内方位元素一般视为已知。

——外方位元素:

表示摄影中心和像片在地面坐标系中的位置和姿态参数。

一张像片的外方位元素包括六个参数,其中有三个是直线元素,用于描述摄影中心的空间坐标值,另外三个是角元素,用于表达像片面的空间姿态。

——三个直线元素Xs,Ys,Zs

摄影中心S在地面空间坐标系中的坐标,通常选用地面摄影测量坐标系

——三个角元素

以y轴为主轴的j-w-k系统

以x轴为主轴的w‘-j’-k‘系统

以Z轴为主轴的A-a-ku系统

空间直角坐标变换:

像点空间直角坐标的旋转变换是指像空间辅助坐标及像空间坐标之间的变换。

共线方程:

它是摄影测量中最基本、最重要的公式。

式中:

x,y为以像主点为原点的像点坐标;

XA,YA,ZA为相应地面点坐标;

f为像片主距,影像的内方位元素(x0,y0),f;

XS,YS,ZS为摄影中心S的物方空间坐标;

ai,bi,ci(i=1,2,3)为影像的三个外方位角元素组成的九个方向余弦

共线方程的逆算式:

已知像点坐标及像片的内外方位元素,还不能计算地面点的三维坐标,只有同时知道地面点的高程时,才能确定地面点的平面位置,因此在摄影测量处理中,需要使用立体影像确定地面点三维坐标。

共线条件方程的应用:

①单像空间后方交会和多像空间前方交会;

②解析空中三角测量光束法平差中的基本数学模型;

③构成数字投影的基础;

④计算模拟影像数据(已知影像内外方位元素和物点坐标求像点坐标);

⑤利用数字高程模型(DEM)及共线方程制作正射影像;

⑥利用DEM及共线方程进行单幅影像测图等等。

航摄像片是中心投影,它的特点是摄影光线均交于同一点S;

地图是正射投影,所有投影光线相互平行并及投影面正交

由于投影的差异,只有在地面水平(无高差)且像片也水平(即平行地面)时,这两种投影方无差异

中心投影变换:

将倾斜摄影的像片变为水平摄影的像片,是一种平面对平面的投影变换。

这种将倾斜摄影的像片变为水平摄影的像片的过程,就称为中心投影变换。

像片纠正:

摄影测量中将任意倾角的像片变为规定比例尺的水平像片(即规定比例尺的影像地图)。

像点位移:

地面点在地面水平的水平像片上的构像及地面有起伏时或倾斜像片上的构像的点位不同,这种点位差异称为像点位移。

-因像片倾斜引起的像点位移

-因地形起伏引起的像点位移

-因物理因素引起的像点位移

摄影物镜的畸变差,大气折光,地球曲率以及底片变形等。

属于一种系统误差,很难用光学机械的方法模拟改正,但可以用数学模型来描述。

像片比例尺:

在航摄像片上某一线段影像的长度及地面上相应线段距离之比,就是像片上该线段的构像比例尺

对于中心投影的航摄像片,只有当像片水平且地面也水平时,像片上任意线段的比例尺都相等。

实际上由于存在像点位移,像片比例尺处处不等,是一个近似值,称为主比例尺。

 

空间后方交会:

利用一定数量的地面控制点,根据共线方程,反求像片的外方位元素,这种方法称为单张像片的空间后方交会。

已知像片的内方位元素和至少三个地面点坐标及像点坐标,则可列出至少六个方程式,解求出像片六个外方位元素。

在空间后方交会中,通常是在像片的四个角上选取四个或更多的地面控制点,因而要用最小二乘法平差计算。

空间后方交会的求解过程:

①获取已知数据:

从摄影资料中查取像片比例尺1/m、平均航高、内方位元素x0,y0,f,从外业测量成果中,获取控制点的地面测量坐标Xt,Yt,Zt,并转化成地面摄影测量坐标Xtp,Ytp,Ztp

②量测控制点的像点坐标:

将控制点标刺在像片上,利用立体坐标量测仪量测控制点的像框标坐标,并经像主点坐标改正,得到像点坐标x,y。

③确定未知数的初始值:

在竖直摄影情况下,角元素的初始值为0,即j0=w0=k0=0;线元素中,ZS0=H=mf,XS0,YS0的取值可用四个角上控制点坐标的平均值,即:

④计算旋转矩阵R:

利用角元素的近似值计算方向余弦值,组成R阵。

⑤逐点计算像点坐标的近似值:

利用未知数的近似值按共线方程计算控制点像点坐标的近似值(x);(y)。

⑥组成误差方程式:

逐点计算误差方程式的系数和常数项。

⑦组成法方程式:

计算法方程的系数矩阵ATA及常数项ATL。

⑧解求外方位元素:

根据法方程,解求外方位元素改正数,并及相应的近似值求和,得到外方位元素新的近似值。

⑨检查计算是否收敛:

将求得的外方位元素的改正数及规定的限差比较,小于限差则计算终止;否则用新的近似值重复4-8的计算,直到满足要求为止。

 

第三章双像解析摄影测量

人体的立体视觉:

单眼观察景物时,人们感觉到的仅是景物的透视像,好像一张像片一样,不能正确判断景物的远近。

只有用双眼观察景物,才能判断景物的远近,得到景物的立体效应,这种现象称为人体的立体视觉。

生理视差:

由于交会角的差异,使得两弧长ab和a’b’不相等,其差s=ab-a’b’称为生理视差。

生理视差是判断景物远近的根源。

人造立体视觉条件:

①两张像片必须是在两个不同位置对同一景物摄取的立体像对;

②每只眼睛必须只能观察像对的一张像片;

③两像片上相同景物(同名像点)的连线及眼基线应大致平行;

④两像片的比例尺相近(差别<15%),否则需用ZOOM系统等进行调节。

双像解析摄影测量的三种方法:

①利用像片的空间后方交会及前方交会来解求地面目标的空间坐标。

②利用立体像对的内在几何关系,进行相对定向,建立及地面相似的立体模型,计算出模型点的空间坐标。

再通过绝对定向,将模型进行平移、旋转、缩放,把模型纳入到规定的地面坐标系之中,解求出地面目标的绝对空间坐标。

③利用光束法双像解析摄影测量来解求地面目标的空间坐标。

这种方法将待求点及已知外业控制点同时列出误差方程式,统一进行平差解求。

这种方法理论较为严密,它把前面两种方法的两种步骤合在一个整体内。

三种方法的比较分析:

①第一种方法前交的结果依赖于空间后方交会的精度,前交过程中没有充分利用多余条件进行平差计算;

②第二种方法计算公式比较多,最后的点位精度取决于相对定向和绝对定向的精度,用这种方法的解算结果不能严格表达一幅影像的外方位元素;

③第三种方法的理论最严密、精度最高,待定点的坐标是完全按最小二乘法原理解求出来的。

立体像对的前方交会:

这种由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。

现已知两张像片的内、外方位元素,设想将像片按内外方位元素值置于摄影时的位置,显然同名射线S1a1及S2a2必然交于地面点A。

空间前方交会的计算步骤为:

①由已知的外方位角元素及像点的坐标,计算像空间辅助坐标;

②由外方位线元素,计算摄影基线分量Bx,By,Bz;

③计算投影系数N1,N2;

④最后由前方交会公式计算地面点的地面摄影测量坐标。

由于N1和N2已经求出,计算地面坐标时YA应取平均值,是为了消除相对定向中存在的残差的影响。

双像解析计算的空间后交—前交方法:

①野外像片控制测量

在重叠部分四角,找出四个明显地物点,作为四个控制点。

在野外用普通测量的方法测算出四个控制点的地面测量坐标XtYtZt。

②用立体坐标量测仪量测像点的坐标

像片在仪器上归心定向后,测出四个控制点的像片坐标(x1,y1)及(x2,y2),然后测出所有需要解求的地面点的像点坐标(x1,y1)和(x2,y2)。

③空间后方交会计算像片外方位元素

根据计算机中事先编制好的程序,按要求输入控制点的地面坐标及相应的像点坐标,对两张像片各自进行空间后方交会,计算各自的六个外方位元素Xs1,Ys1,Zs1,j1,w1,k1和Xs2,Ys2,Zs2,j2,w2,k2。

④空间前方交会计算未知点地面坐标

1)用各自像片的角元素,计算出左、右像片的方向余弦值,组成旋转矩阵R1及R2。

2)根据左、右像片的外方位线元素计算摄影基线分量Bx,By,Bz

3)逐点计算像点的像空间辅助坐标:

 

4)计算点投影系数:

5)计算未知点的地面摄影测量坐标:

6)重复3~5完成所有点地面坐标的计算。

相对定向:

用解析计算的方法解求相对定向元素的过程,称为解析法相对定向。

由于不涉及像片的绝对位置,因此不需控制点。

相对定向元素:

用于描述两张像片相对位置和姿态关系的参数,称为相对定向元素。

像片在选定的像空间辅助坐标系中的位置(摄影中心S的坐标)和姿态(像片的姿态角,用j,w,k表示)。

连续像对相对定向:

是以左方像片为基准,求出右方像片相对于左方像片的相对方位元素。

(以左片的像空间坐标系作为像空间辅助坐标系)

bx只决定模型的大小,不影响模型的建立,因此可以给定一固定值,不需求解。

相对定向元素为5个。

 

单独像对相对定向:

是以摄影基线作为像空间辅助坐标系的X轴,以左摄影中心S为原点,左像片主光轴及摄影基线B组成的主核面(左主核面)为XZ平面,构成右手直角坐标系。

bx只决定模型的大小,不影响模型的建立,因此可以给定一固定值,不需求解。

相对定向元素为5个。

 

解析法相对定向原理:

从两个摄站对同一地面摄取一个立体像对时,同名射线对对相交于地面点,此时,若保持两张像片之间相对位置和姿态关系不变,将两张像片整体移动时,同名射线对对相交的特性也不发生变化。

同名射线对对相交是相对定向的理论基础。

相对定向的共面条件:

如图所示,S1a1和S2a2为一对同名射线,其矢量用S1a1和S2a2表示,摄影基线矢量用B表示。

同名射线对对相交,表明射线S1a1,S2a2,及摄影基线B位于同一平面内,亦即三矢量S1a1,S2a2,B共面。

根据矢量代数,三矢量共面,它们的混合积等于零,即:

共面条件方程

其值为零的条件是完成相对定向的标准,用于解求相对定向元素。

连续像对相对定向元素解算过程:

①在立体坐标量测仪上,量测选定的6个定向点的像点坐标(x1,y1)及(x2,y2)。

②确定初始值:

假定左像片水平,则左片旋转矩阵R1为单位阵;右片的角元素j,w,k及m,g的初始值取为零;bx取定向点中1号点的左右视差(x1–x2)。

③根据初始值,计算右片旋转矩阵R2。

④根据输入的像点平面坐标,计算像空间辅助坐标:

⑤根据给定的初始值,计算by,bz,并根据像空间辅助坐标,计算各点的投影系数N1,N2。

⑥根据连续像对相对定向的作业公式计算每个定向点的误差方程常数项及系数项,组成误差方程式。

⑦计算法方程系数矩阵及常数项,并解求法方程,求得未知数的改正数。

⑧求未知数的新值,即初始值加改正数。

⑨检查未知数的改正数是否大于限差,若大于限差,则重复③~⑧步的计算,直到所有改正数都小于限差为止。

绝对定向:

要确定立体模型在地面测量坐标系中的正确位置,则需要把模型点的摄影测量坐标转化为地面测量坐标,这一工作需要借助于地面测量坐标为已知值的地面控制点来进行,称为立体模型的绝对定向。

绝对定向包括模型的旋转、平移和缩放。

解析法绝对定向的目的:

将相对定向后求出的摄影测量坐标变换为地面测量坐标。

绝对定向元素:

一个像对的两张像片有十二个外方位元素,相对定向求得五个元素后,要恢复像对的绝对位置,还要解求七个绝对定向元素。

绝对定向元素共有七个(∆X,∆Y,∆Z,λ,Φ,Ω,K,)

式中,(Xtp,Ytp,Ztp)为模型点的地面摄影测量坐标,(XP,YP,ZP)为同一模型点的摄影测量坐标。

l为模型缩放比例因子,a1,bl,…,c3为坐标轴系三个转角Φ,Ω,K,计算出的方向余弦,∆X,∆Y,∆Z为坐标原点的平移量。

上式中有7个未知数,至少需列7个方程,若将已知平面坐标(Xtp,Ytp)和高程Ztp的地面控制点称为平高控制点,仅已知高程的控制点称为高程控制点,则至少需要两个平高控制点和一个高程控制点,而且三个控制点不能在一条直线上。

生产中,一般是在模型四角布设四个控制点,因此有多余观测值,按最小二乘法平差解求。

绝对定向的解算过程:

(1)确定待定参数的初始值:

Φ0=Ω0=К0=0,λ0=1,ΔX=ΔY=ΔZ=0。

(2)计算地面摄影测量坐标系重心的坐标和重心化的坐标。

(3)计算摄影测量坐标系重心的坐标和重心化的坐标。

(4)计算常数项

(5)组成总误差方程式。

(6)逐点法化及法方程式求解,得到待定参数的改正数。

(7)计算待定参数的新值

(8)判断dΦ,dΩ,dК是否均小于给定的限值ε。

若大于限值ε,则重复计算,否则,计算过程结束。

光束法双像解析摄影测量:

用已知的少数控制点以及待求的地面点,在像对内,同时解求两张像片的外方位元素及待定点的坐标。

由共线方程出发,但在线性化过程中及单影像空间后方交会问题的不同之处是此时把待定点坐标X,Y,Z作为未知数,未知数,控制点同时列误差方程,联合进行解算。

该解法含有左、右像片共十二个外方位元素为未知数。

对于每个待求点还引入三个坐标改正数为未知数。

若一个立体像对中有四个平高控制点和n个待求点,则共需要解求(12+3n)个未知数,而误差方程式个数为(16+4n)。

外方位元素和待定点坐标按照最小二乘法原理解求。

解析空中三角测量:

指的是用摄影测量解析法确定区域内所有影像的外方位元素。

摄影测量方法测定(或加密)点位坐标的意义:

①不需直接触及被量测的目标或物体,凡是在影像上可以看到的目标,不受地面通视条件限制,均可以测定其位置和几何形状;

②可以快速地在大范围内同时进行点位测定,从而可节省大量的野外测量工作量;

③摄影测量平差计算时,加密区域内部精度均匀,且很少受区域大小的影响;

④所以,摄影测量加密方法已成为一种十分重要的点位测定方法。

解析空中三角测量的分类:

从传统方法上讲,根据平差中采用的数学模型可分为航带法、独立模型法和光束法。

根据平差范围的大小,解析空中三角测量可分为单模型法、单航带法和区域网法。

GPS辅助空中三角测量:

是指利用机载GPS接收机及地面基准点的GPS接收机同时、快速、连续地记录相同的GPS卫星信号,通过相对定位技术的离线数据后处理获取摄影机曝光时刻摄站的高精度三维坐标,将其作为区域网平差中的附加非摄影测量观测值,以空中控制取代(或减少)地面控制;经采用统一的数学模型和算法,整体确定点位并对其质量进行评定的理论、技术和方法。

 

第四章数字摄影测量

数字摄影测量:

利用数字灰度信号,采用数字相关技术量测同名像点,在此基础上通过解析计算,进行相对定向和绝对定向,建立数字立体模型,从而建立数字高程模型、绘制等高线、制作正射影像图以及为地理信息系统提供基础信息等。

利用计算机技术,代替人眼的立体模型观测。

计算机、计算机的计算和影像匹配算法;对象为数字或数字化影像。

影像数字化:

将透明正片(或负片)放在影像数字化器上,把像片上像点的灰度值用数字形式记录下来,称为影像数字化。

设F0为投影在透明像片上的光通量,F为透过透明像片后的光通量。

透过率T,不透过率O

影像的灰度:

又称光学密度,反映了透明的程度,即透光的能力。

影像的灰度用不透过率的对数表示:

 

采样:

对实际连续函数模型离散化的量测过程,被量测的点称为样点,样点之间的距离即采样间隔。

量化:

将各点的灰度值取为整数的过程

方法为将透明像片有可能出现的最大灰度变化范围进行等分,等分的数目称为“灰度等级”,然后将每个点的灰度值在其相应的灰度等级内取整,取整的原则是四舍五入。

由于数字计算机中数字均用二进制表示,因此灰度等级一般都取为2m(m是正整数)。

数字影像是一个灰度矩阵g。

矩阵的每个元素gj,i是一个灰度值,对应着光学影像或实体的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2