高中化学《金属晶体》教案 新人教版选修.docx

上传人:b****6 文档编号:11928522 上传时间:2023-06-03 格式:DOCX 页数:8 大小:19.72KB
下载 相关 举报
高中化学《金属晶体》教案 新人教版选修.docx_第1页
第1页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第2页
第2页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第3页
第3页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第4页
第4页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第5页
第5页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第6页
第6页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第7页
第7页 / 共8页
高中化学《金属晶体》教案 新人教版选修.docx_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

高中化学《金属晶体》教案 新人教版选修.docx

《高中化学《金属晶体》教案 新人教版选修.docx》由会员分享,可在线阅读,更多相关《高中化学《金属晶体》教案 新人教版选修.docx(8页珍藏版)》请在冰点文库上搜索。

高中化学《金属晶体》教案 新人教版选修.docx

高中化学《金属晶体》教案新人教版选修

高中化学《金属晶体》教案新人教版选修

第1课时

【教材内容分析】

在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。

本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。

教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。

教学目标1理解金属键的概念和电子气理论2初步学会用电子气理论解释金属的物理性质重点:

金属键和电子气理论难点:

金属具有共同物理性质的解释。

【教学过程设计】

【引入】

大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?

它们又是靠什么作用结合在一起的呢?

【板书】

一、金属键金属晶体中原子之间的化学作用力叫做金属键。

【讲解】

金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。

这种金属离子与自由电子之间的较强作用就叫做金属键。

金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。

金属键是一种遍布整个晶体的离域化学键。

【强调】

金属晶体是以金属键为基本作用力的晶体。

【板书】

二、电子气理论及其对金属通性的解释1电子气理论

【讲解】

经典的金属键理论叫做“电子气理论”。

它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。

2金属通性的解释

【展示金属实物】

展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。

叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。

【教师引导】

从上述金属的应用来看,金属有哪些共同的物理性质呢?

【学生分组讨论】

请一位同学归纳,其他同学补充。

【板书】

金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。

金属导电性的解释在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。

【设问】

导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色?

金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

金属延展性的解释当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。

因此,金属都有良好的延展性。

【课堂练习】

1金属晶体的形成是因为晶体中存在

A、金属离子间的相互作用B金属原子间的相互作用

C、金属离子与自由电子间的相互作用

D、金属原子与自由电子间的相互作用2金属能导电的原因是

A、金属晶体中金属阳离子与自由电子间的相互作用较弱B金属晶体中的自由电子在外加电场作用下可发生定向移动C金属晶体中的金属阳离子在外加电场作用下可发生定向移动D金属晶体在外加电场作用下可失去电子课后阅读材料1超导体一类急待开发的材料一般说来,金属是电的良好导体(汞的很差)。

1911年荷兰物理学家H昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4K(即2

69、)时汞的电阻“奇异”般地降为零,表现出超导电性。

后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。

2合金两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。

合金的特点仍保留金属的化学性质,但物理性质改变很大;熔点比各成份金属的都低;强度、硬度比成分金属大;有的抗腐蚀能力强;导电性比成分金属差。

3金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。

(1)状态:

通常情况下,除Hg外都是固体。

(2)金属光泽:

多数金属具有光泽。

但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。

(3)易导电、导热:

由于金属晶体中自由电子的运动,使金属易导电、导热。

(4)延展性(5)熔点及硬度:

由金属晶体中金属离子跟自由电子间的作用强弱决定。

金属除有共同的物理性质外,还具有各自的特性。

颜色:

绝大多数金属都是银白色,有少数金属具有颜色。

如Au金黄色Cu紫红色Cs银白略带金色。

密度:

与原子半径、原子相对质量、晶体质点排列的紧密程度有关。

最重的为锇(Os)铂(Pt)最轻的为锂(Li)

熔点:

最高的为钨(W),最低的为汞(Hg),Cs,为284Ca为30硬度:

最硬的金属为铬(Cr),最软的金属为钾(K),钠(Na),铯(Cs)等,可用小刀切割。

导电性:

导电性能强的为银(Ag),金(Au),铜(Cu)等。

导电性能差的为汞(Hg)

延展性:

延展性最好的为金(Au),Al

第三节金属晶体

第2课时

【教材内容分析】

晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。

学生自己探究金属晶体的结构有了可能。

晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。

学生自己探究金属晶体的结构有了可能。

【教学目标设定】

1了解金属晶体内原子的几种常见排列方式2了解金属晶体内原子的几种常见排列方式3训练学生的动手能力和空间想象能力,培养学生的合作意识

【教学重点难点】

金属晶体内原子的空间排列方式

【教学方法建议】

活动探究

【教学过程设计】

【引入】

分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。

今天,我们一起讨论有关金属原子的空间排列问题。

【分组活动1】

利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。

可能有几种排列方式。

讨论每一种方式的配位数。

(配位数:

同一层内与一个原子紧密接触的原子数)学生活动学生分四组活动,各由一人汇报

结果。

利用多媒体展示,学生排列结果主要介绍以下两种方式。

(配位数:

同一层内与一个原子紧密接触的原子数)非密置层,配位数4密置层,配位数6我们继续讨论,原子在三维空间的排列。

首先讨论非密置层这种情况。

【学生活动2】

非密置层排列的金属原子,在空间内可能的排列。

汇总各类情况逐一讨论。

简单立方体堆积这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。

这种堆积方式的空间利用率太低,只有金属钋采取这种堆积方式。

(二)钾型如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图:

这种堆积方式的空间利用率显然比简单立方堆积的高多了,许多金属是这种堆积方式,如碱金属,简称为钾型。

密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,镁型和铜型。

镁型如下图左侧,按ABABABAB的方式堆积;铜型如图右侧,按ABCABCABC的方式堆积、这两种堆积方式都是金属晶体的最密堆积,配位数均为12,空间利用率均为74,但所得的晶胞的形式不同、归纳与整理金属晶体的四种堆积模型对比堆积模型采用这种堆积的典型代表空间利用率配位数晶胞简单立方Po526钾型NaKFe688镁型MgZnTi7412铜型CuAgAu7412混合晶体石墨不同于金刚石,这的碳原子不像金刚石的碳原子那样呈sp3杂化、而是呈sp2杂化,形成平面六元并环结构,因此石墨晶体是层状结构的,层内的碳原子的核间距为142pm层间距离为335pm,说明层间没有化学键相连,是靠范德华力维系的;石墨的二维结构内,每一个碳原子的配位数为3,有一个末参与杂化的2p电子,它的原子轨道垂直于碳原子平面。

石墨晶体中,既有共价键,又有金属键,还有范德华力,不能简单地归属于其中任何一种晶体,是一种混合晶体。

【教学过程】

问题引入:

在金属单质中只有金属原子而没有分子,这些金属的晶体能否称为原子晶体问题探索:

金属的晶体并非原子晶体,怎样从微观角度证明这个判断?

(提示:

可从原子晶体的中化学键的特点来分析)回忆具有什么结构的原子之间才能形成共价键,然后作出回答讲解:

在原子晶体中,所有原子通过共价键结合,而金属原子由于最外层电子数较少,原子与原子之间不能形成共价键,所以不是原子晶体回忆金属易失电子,难以形成共用电子对的性质讲述:

在金属晶体中,原子之间通过金属键相互结合讲解:

金属原子的电负性和电离能都较小,在金属晶体中,大量最外层电子也即是价电子容易脱离原子的束缚而变成自由电子,同时使原来的原子变成正离子,这些自由电子为各个原子所共用,自由电子与金属正离子的相互作用就是金属键。

这些电子遍布整块晶体,就象气体遍布整个空间一样,所以该理论又被形象地称为“电子气理论”回忆电负性和电离能的知识,思考和体会“电子气理论”的实质问题探索:

金属晶体与分子晶体和原子晶体相比较,其成键的微粒有何异同?

键的性质又有何异同?

回忆、比较、讨论三种晶体的异同问题解答:

金属晶体和原子晶体的成键微粒都是原子,分子晶体的成键微粒是分子;金属晶体中的金属键是自由电子与金属正离子的相互作用,原子晶体中则是原子之间形成了共价键,而在分子晶体中,分子内部的原子通过共价键结合在一起,分子之间则是通过范德华力相结合归纳、回答三种晶体的结构特点和异同阅读、讨论:

阅读电子气理论对金属延展性的解释,小组讨论如何解释导电性和导热性归纳、总结:

金属晶体中的自由电子在外加电场的作用下可以发生定向移动,从而使金属具有良好的导电性和导热性,但由于导热时自由电子在热的作用下与金属原子频繁碰撞,导致了金属的导热能力下降,即是说,金属的热导率随温度的升高而下降小组归纳讨论的结果,由学生代表解释金属具有良好导电性和导热性的原因衔接、过渡:

我们已经知道,不同的分子晶体或原子晶体,其晶体结构不一定相同,例如石墨和金刚石都是由碳元素组成的,也都是原子晶体,但晶体结构并不相同,性质也同样有很大的差别,在金属晶体中,不同的晶体也有不同的结构,从而导致晶体具有不同的性质学与问:

用轴承滚珠或其它合适物体尝试在二维空间紧密排列金属原子,并用胶水黏合滚珠讲解:

金属原子的平面堆积有两种方式:

非密置层和密置层,其配位数分别是4和6,所谓配位数,是指任意一个原子周围与之相接触的原子的数目(展示课前用弹珠制作的模型,辅助说明配位数的意思)金属晶体可看成金属原子在三维空间堆积而成,有四种基本模式对照演示模型和自制模型,体会非密置层、密置层以及配位数所表达的含义演示,讲述:

将两层非密置层以两种方式叠放)全部是非密置层进行叠放时,有两种情况,一种是简单立方堆积,此时形成的晶胞是一个正方体,每个晶胞含一个原子,配位数是6,这种堆积使原子间的间隙过大,即空间利用率太低。

另一种是钾型堆积,此时每个晶胞含两个原子,配位数是8,空间利用率较高运用手中的自制模型,堆积成这两种空间结构,观察并分析这两种堆积的配位数演示,讲述:

将三层密置层以两种方式叠放)密置层的叠放也有两种情况:

镁型和铜型,这两种情况的配位数都是12,空间利用率也比前两种方式大。

镁型晶胞中有两个原子,铜型晶胞中有四个原子运用手中的自制模型,堆积成这两种空间结构,观察并分析这两种堆积的配位数实践活动:

运用模型对比钾型堆积方法和镁型堆积方法有何不同总结:

金属原子的堆积方式不同,最终将影响金属晶体的结构和性质。

例如原子半径、熔沸点等通过了解原子堆积方式对性质的影响,加强“结构决定性质”的基本理念

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2