塑胶产品内应力研究与消除方法.docx

上传人:b****6 文档编号:12692242 上传时间:2023-06-07 格式:DOCX 页数:13 大小:26.13KB
下载 相关 举报
塑胶产品内应力研究与消除方法.docx_第1页
第1页 / 共13页
塑胶产品内应力研究与消除方法.docx_第2页
第2页 / 共13页
塑胶产品内应力研究与消除方法.docx_第3页
第3页 / 共13页
塑胶产品内应力研究与消除方法.docx_第4页
第4页 / 共13页
塑胶产品内应力研究与消除方法.docx_第5页
第5页 / 共13页
塑胶产品内应力研究与消除方法.docx_第6页
第6页 / 共13页
塑胶产品内应力研究与消除方法.docx_第7页
第7页 / 共13页
塑胶产品内应力研究与消除方法.docx_第8页
第8页 / 共13页
塑胶产品内应力研究与消除方法.docx_第9页
第9页 / 共13页
塑胶产品内应力研究与消除方法.docx_第10页
第10页 / 共13页
塑胶产品内应力研究与消除方法.docx_第11页
第11页 / 共13页
塑胶产品内应力研究与消除方法.docx_第12页
第12页 / 共13页
塑胶产品内应力研究与消除方法.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

塑胶产品内应力研究与消除方法.docx

《塑胶产品内应力研究与消除方法.docx》由会员分享,可在线阅读,更多相关《塑胶产品内应力研究与消除方法.docx(13页珍藏版)》请在冰点文库上搜索。

塑胶产品内应力研究与消除方法.docx

塑胶产品内应力研究与消除方法

塑胶产品内应力研究与消除方法一

1.注塑制品一个普遍存在的缺点是有内应力。

内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。

因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。

特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。

此外,掌握注塑制品内应力的消除方法和测试方法也很有必要

2内应力的种类

高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。

另外,外力使制件产生强迫高弹形变也会在其中形成内应力。

根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。

对注塑制件力学性能影响最大的是取向应力和体积温度应力。

取向应力

高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。

试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。

体积温度应力

体积温度应力是制件冷却时不均匀收缩引起的。

因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。

这可以通过提高模具温度、降低加工温度来达到。

加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。

模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。

这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。

与制件体积不平衡有关的应力

高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。

实验测定表明,注塑制件中这种形式的内应力一般很小。

与制件顶出变形有关的内应力

这种内应力主要与开模条件和模具顶出机构的设计有关。

正确选择开模条件使开模前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出机构,使制件顶出时不致变形,是可以将这种形式的内应力减少到不会影响制件力学性能的限度以内的。

3影响注塑制品内应力的因素分析

注塑制品的造型设计不合理、模具设计不合理、成型工艺条件不正确、注射机选用不当等都会使制品内存在比较大的内应力。

影响制品内应力的因素很多,也很复杂。

主要影响因素见下图所示

造型设计

3.1.1圆角

塑料制品除了使用上要求采用尖角外,各表面相交处应尽可能采用圆弧过渡。

由于制品形状和截面的变化,使注塑过程中熔料在尖角处的流态发生急剧变化而产生大的应力,而且残留在尖角处。

在有载荷或受冲击振动时会发生破裂,甚至在脱模过程中即由于模塑内应力而开裂,特别是制品的内圆角。

一般,即使采用R为的圆角就能使塑件强度大为增加。

一般情况下,理想的内圆角半径应有壁厚的1/4以上。

外圆角半径可取壁厚的倍。

采用圆弧过渡既可以减少应力集中,还可大大改善塑料的充模特性,避免在转角处产生冲击形成波纹或充不满模腔。

塑件设计成圆角,使模具型腔对应部位也呈圆角,这样增加了模具的坚固性,塑件的外圆角对应着型腔的内圆角,它使模具在淬火或使用时不至于因应力集中而开裂,提高了模具的使用寿命。

但是在塑件的某些部位如分型面、型芯与型腔配合处等不便做成圆角而只能采用尖角。

除相交表面的尖角外,尖锐的螺纹牙也是严重的应力集中源,采用倒圆角的螺纹可减少应力集中,提高螺纹强度。

3.1.2制品壁厚

制品壁厚是结构设计时所需要考虑的重要因素。

不合理的壁厚会给制品带来很多缺陷。

增加壁厚既可改善树脂的充模特性,又可降低取向应力,减少变形,提高制品强度。

但同时收缩加大,保压和冷却时间加长,生产效率降低,消耗材料多。

较大的收缩应力还将造成制品表面产生凹陷或内部出现缩孔与气泡,既影响外观又降低了强度。

增加壁厚的同时也增加了制品的表面积,表面积与体积之比越大,表面冷却越快,取向应力和体积温度应力都随之增大。

如果制品壁太薄,会降低强度,脱模时易破裂,还有碍于树脂的充模流动,造成填充不足或出现明显的熔合纹,严重影响制品质量。

每种塑料根据充模能力都有一个最小壁厚。

确定壁厚时在满足强度要求的前提下,壁厚尽量取薄些,可节省材料,减轻制品重量,降低成本,但不能小于最小壁厚。

ABS常用的标准壁厚为~。

壁厚设计还应注意均匀一致,否则将会由于收缩应力引起制品的翘曲变形。

同一制品中,若必须存在壁厚相差较大的情况时,连接处应逐渐过渡,避免截面的突变。

3.1.3金属嵌件

由于金属嵌件冷却时尺寸变化与塑料的热收缩值相差很大,使嵌件周围产生很大的内应力,而造成塑件的开裂。

对某些高刚性的工程塑料更甚,如聚碳酸酯;但对于弹性和冷流动性大的塑料则应力值较低。

当有金属嵌件存在时,应尽量避免制件开裂:

(1)如能选用与塑料线膨胀系数相近的金属作嵌件,内应力值可以降低;

(2)嵌件周围的塑料应有足够的厚度,否则会由于存在收缩应力而开裂;

(3)嵌件的顶部也应有足够厚的塑料层,否则嵌件顶部塑件表面会出现鼓包或裂纹;

(4)嵌件不应带尖角、锐边,以减少应力集中;

(5)热塑性塑料注射成型时,将金属嵌件预热到接近物料温度,可减少由于金属与塑料热膨胀系数不同而产生的收缩应力;

(6)对于内应力难以自消的塑料,可先在嵌件周围被覆一层高分子弹性体或在成型后进行退火处理来降低内应力;

(7)在塑件成型后再装配或压入嵌件,可调节因嵌入嵌件而造成的内应力值,使制件不致破裂。

注塑机选用

注射机选用不当,也会产生内应力。

那种认为大容量注射机注射小模具中的制品会减少内应力的说法不正确。

有时会因为压力过高、喷嘴结构不合适或混料造成较大的内应力。

模具设计

模具浇注系统和顶出机构设计不当都会使制件产生内应力。

3.3.1浇注系统

模具浇注系统设计不合理如浇口大小不合适、浇道太窄、主流动太长、浇口位置不合理都会造成内应力:

(1)浇口尺寸太大,补料时间就会延长,会增大大分子的冻结取向和冻结应变,造成很大的补料内应力,特别在浇口附近内应力更大。

小浇口的适时封闭,能适当地控制补料时间。

但浇口尺寸也不宜太小,过小的浇口会造成太大的流动阻力,产生取向应力。

(2)主流道太长、流道太窄、流道的急剧转折都会使流动阻力加大,延长进料时间或需增大注射压力和保压压力,会使制品产生更高的取向应力。

(3)浇口位置的选取除考虑制品外观和熔接缝外,还应尽量减少在流动方向上由于充模和补料而造成的定向作用。

3.3.2顶出机构

顶出机构设计不当,使脱模力不均衡或型芯表面在脱模过程中形成真空或施加过大的脱模力,都会造成塑件产生强迫高弹形变形成内应力,甚至龟裂,严重时发生开裂。

龟裂和开裂看上去相似,本质上有区别。

龟裂不是空隙状的缺陷,是高分子本身同所加应力成平行方向排列,经过加热又能恢复到无龟裂的状态,所以能用热处理方法解决。

注塑成型后立即热处理效果较好。

防止顶出产生内应力需改善脱模条件,如仔细磨光型芯侧面;增加脱模斜度;平衡顶出力;顶杆应布置在脱模阻力最大的部位如型芯凸台附近及能承受较大顶出力的部位,如加强筋、凸缘、塑件端面等部位。

机械加工

注塑制品除为切除大浇口冷凝料而进行机械加工外,当制件尺寸精度和形位公差要求很高而无法通过模具设计与调整工艺条件得到保证,或零件上有难以一次成型出的形状(如小而深的孔或螺纹等)时,成型之后就需要进行机械加工。

常用的机械加工工艺有车、铣、刨、钻、锯、铰孔和拱螺纹等。

但机械加工会使塑件内部产生内应力,因此加工时应用专用刀具、宜采用较低的切削速度、小切削量和低速度,还应保证充分冷却。

对于易产生内应力的制品应进行多次热处理。

注塑成型工艺条件

注塑制品由于成型工艺特点不可避免的存在内应力,但工艺条件控制得当就会使塑件内应力降低到最小程度,能够保证制件的正常使用。

相反,如果工艺控制不当,制件就会存在很大的内应力,不仅使制件强度下降,而且在储存和使用过程中出现翘曲变形甚至开裂。

需要控制的工艺条件如嵌件预热、模具温度、加工温度、注射速度、注射压力、保压压力、注射时间、保压时间、冷却时间等。

温度、压力、时间是塑料成型工艺的主要因素。

3.5.1金属嵌件预热

注射成型时,应将金属嵌件预热到接近物料温度,预热嵌件的目的是减少金属与塑料冷却时收缩值的差距,从而降低由于二者热膨胀系数的不同而在嵌件周围产生的收缩应力。

收缩应力是注塑制品内容易形成的内应力的一种,这种内应力的存在,是带金属嵌件的注塑制品出现裂纹和强度下降的重要原因。

3.5.2模具温度

提高模具温度,可以降低因内外收缩不均而产生的体积温度应力和高分子取向应力,也可以降低结晶塑料制品的结晶应力。

但模温也不能过高,模温升高使冷却时间延长,降低了生产效率。

3.5.3加工温度

提高加工温度可降低取向应力,但同时会使因收缩不均而产生的体积温度应力增加,同时也使封口压力升高,延长冷却时间才能顺利脱模。

3.5.4注射压力、注射速度和注射时间

增大注射压力使取向应力和结晶塑料的结晶应力增加,同时使封口压力增大,必须延长冷却时间才能顺利脱模,否则会造成脱模应力;注射速度增加也会使取向应力和结晶应力增加,但对冷凝快的塑料还是用高的注射速度充模较为有利,因为冷凝快的塑料慢速注射需要更高的注射压力来维持熔体的流动;注射时间不宜太长,模腔充满以后就相当于在注射压力下保压了,也会使制件的取向应力增加。

3.5.5保压压力和保压时间

冷却中的熔体在外压作用下产生的总形变中,有相当大一部分是弹性的,故使熔体在高压下冷凝会在制件中产生较大的内应力和高分子取向。

压实后立即降压或补料过程中分步降压有利于高分子解取向,所以降低保压压力和缩短保压时间有利于取向应力的降低;延长保压时间仅在一定范围内取向度增大,浇口封闭之后再延长保压时间对取向度的变化就不再影响。

3.5.6冷却时间

当注射压力、保压压力、熔体温度升高,浇口尺寸较大时都会使封口压力升高,这时必须延长冷却时间才能使开模前模腔内的残余压力降到很低或接近于零,否则要将制件顺利地从模具内顶出是很困难的。

若强制脱模,制件在顶出时会产生很大的应力,以至制件可能被划伤,严重时会出现破裂。

但冷却时间也不宜过长,否则不但生产效率低,而且制件内部压力降到零以后进一步冷却可能在制件内部形成负压,即由于冷却收缩使制件内外层之间产生拉应力。

3.注塑制品内应力的消除方法

在注塑成型或机械加工之后及时对制件进行热处理是降低或消除其内应力,使其内部结构加速达到稳定状态的一个有效措施。

对于要求强度高、尺寸稳定性好的制件,往往在加工过程中进行不只一次的热处理。

热处理的方法是:

在加热介质中先将温度从室温升到一定温度(这个温度常称为热处理温度或退火温度),使制件在此温度下保持一定的时间,然后缓慢地冷却到室温。

影响热处理效果最重要的工艺因素是热处理温度和热处理时间。

在理论上热处理温度越高,热处理时间越长,制件的内应力就能在更大程度上被消除,其内部结构就越趋于稳定。

但实际使用的温度却不能太高,温度过高容易引起制件在热处理过程中发生翘曲变形。

一般认为,热塑性塑料注塑件的热处理温度以稍低于热变形温度(约低5℃~10℃)为宜。

热处理时间则主要与塑料的性质与制件壁厚有关,高分子链的刚性越大,制件的壁越厚,需要进行热处理的时间就越长。

正确选用加热介质对热处理效果也很重要。

用空气作为加热介质,有操作简便和处理后不需要清洗等优点。

ABS塑料在65~75℃空气中处理2~4小时效果良好。

但空气热传导效率低,容易引起尼龙类和聚甲醛等塑料氧化变色。

高沸点油作为热处理介质有传热快、制件加热均匀等优点,但操作比较麻烦,而且处理后的制件上存留的油斑有时很难除去。

吸水性强的尼龙类塑料制件用水或乙酸钾的水溶液(沸点121℃)作热处理介质比较好。

用这种介质既有利于防止制件在热处理过程中氧化变色,又能使其加速达到吸湿平衡。

热处理有时不一定能达到理想的效果,只能作为一种辅助工序,完全依靠热处理防止应力开裂的做法不可靠。

必须从影响注塑制品内应力的几个主要因素方面采取有效措施,结合热处理方法才能取得满意效果。

4.应力的危害

开裂:

因为应力的存在,在受到外界作用後(如移印时接触到化学溶剂或者烤漆後端时高温烘烤),会诱使应力释放而在应力残留位置开裂。

开裂主要集中在浇口处或过度填充处。

翘曲及变形:

因为残留应力的存在,因此产品在室温时会有较长时间的内应力释放或者高温时出现短时间内残留应力释放的过程,同时产品局部存在位置强度差,产品就会在应力残留位置产生翘曲或者变形问题。

产品尺寸变化:

因为应力的存在,在产品放置或後处理的过程中,如果环境达到一定的温度,产品就会因应力释放而发生变化。

5.内应力检测方法

通常是把零件防在溶剂中,15s~2min等,在那出来看是否有开裂来判断是否有应力

常用塑胶件有于检验溶液对照表:

ABS煤油、冰醋酸

PC四氯化碳

PS煤油、冰醋酸

PA正庚烷

PSF四氯化碳

PPO四氯化碳

塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素影响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。

塑料内应力产生的原因

产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

依引起内应力的原因不同,可将内应力分成如下几类。

(1)取向内应力

取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向应力产生的具体过程为:

*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

用热处理的方法,可降低或消除塑料制品内的取向应力。

塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。

(2)冷却内应力

冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力。

尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。

塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化.。

另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。

除上述两种主要内应力外,还有以下几种内应力:

对于结晶塑料制品而言,其制品内部各部位的结晶结构和结晶度不同也会产生内应力。

另外还有构型内应.力及脱模内应力等,只是其内应力听占比重都很小。

影响塑料内应力产生的因素

(1)分子链的刚性

分子链刚性越大,熔体粘度越高,聚合物分子链活动性差,因而对于发生的可逆高弹形变恢复性差,易产生残余内应力口例如,一些分子链中含有苯环的聚合物,如PC、PPO、PPS等,其相应制品的内应力偏大。

(2)分子链的极性

一分子链的极性越大,分子间相互吸引的作用力越大,从而使分子间相互移动困难增大,恢复可逆弹性形变的程度减小,导致残余内应力大。

例如,一些分子链中含有羰基、酯基、睛基等极性基团的塑料品种,其相应制品的内应力较大。

(3)取代基团的位阻效应

大分子侧基取代基团的体积越大,则妨碍大分子链自由运动导致残余内应力加大。

例如,聚苯乙烯取代基团的苯基体积较大,因而聚苯乙烯制品的内应力较大。

几种常见聚合物的内应力大小顺序如下:

PPO>PSF>PC>ABS>PA6>PP>HDPE塑料内应力的降低与分散

(1)原料配方设计

1)选取分子量大、分子量分布窄的树脂

聚合物分子量越大,大分子链间作用力和缠结程度增加,其制品抗应力开裂能力较强;聚合物分子量分布越宽,其中低分子量成分越大,容易首先形成微观撕裂,造成应力集中,便制品开裂。

2)选取杂质含量低的树脂

聚合物内的杂质即是应力的集中体,又会降低塑料的原有强度,应将杂质含量减少到最低程度。

3)共混改性

易出现应力开裂的树脂与适宜的其它树脂共混,可降低内应力的存在程度。

例如,在PC中混入适量PS,PS呈近似珠粒状分散于PC连续相中,可使内应力沿球面分散缓解并阻止裂纹扩展,从而达到降低内应力的目的。

再如,在PC中混入适量PE,PE球粒外沿可形成封闭的空化区,也可适当降低内应力。

4)增强改性

用增强纤维进行增强改性,可以降低制品的内应力,这是因为纤维缠结了很多大分子链,从而提高应力开裂能力。

例如,30%GFPC的耐应力开裂能力比纯PC提高6倍之多。

5)成核改性

在结晶性塑料中加入适宜的成核剂,可以在其制品中形成许多小的球晶,使内应力降低并得到分散。

(2)成型加工条件的控制

在塑料制品的成型过程中,凡是能减小制品中聚合物分子取向的成型因素都能够降低取向应力;凡是能使制品中聚合物均匀冷却的工艺条件都能降低冷却内应力;凡有助于塑料制品脱模的加工方法都有利于降低脱模内应力。

对内应力影响较大的加工条件主要有如下几种。

①料筒温度

较高的料筒温度有利于取向应力的降低,这是因为在较高的料筒温度,熔体塑化均匀,粘度下降,流动性增加,在熔体充满型腔过程中,分子取向作用小,因而取向应力较小。

而在较低料筒温度下,熔体粘度较高,充模过程中分子取向较多,冷却定型后残余内应力则较大。

但是,料筒温度太高也不好,太高容易造成冷却不充分,脱模时易造成变形,虽然取向应力减小,但冷却应力和脱模应力反而增大。

②模具温度

模具温度的高低对取向内应力和冷却内应力的影响都很大。

一方面,模具温度过低,会造成冷却加快,易使冷却不均匀而引起收缩上的较大差异,从而增大冷却内应力;另一方面,模具温度过低,熔体进入模其后,温度下降加快,熔体粘度增加迅速,造成在高粘度下充模,形成取向应力的程度明显加大。

模温对塑料结晶影响很大,模温越高,越有利于晶粒堆砌紧密,晶体内部的缺陷减小或消除,从而减少内应力。

另外,对于不同厚度塑料制品,其模温要求不同。

对于厚壁制品其模温要适当高一些。

以PC为例,其内应力大小与模具温度的关系如表5-5所示。

③注射压力

注射压力高,熔体充模过程中所受剪切作用力大,产生取向应力的机会也较大。

因此,为了降低取向应力和消除脱模应力,应适当降低注射压力。

.

以PC为例,其内应力大小与注射压力的关系如表5-6所示。

.

④保压压力

保压压力对塑料制品内应力的影响大于注射压力的影响。

在保压阶段,随着熔体温度的降低,熔体粘度迅速增加,此时若施以高压,必然导致分子链的强迫取向,从而形成更大的取向应力。

⑤注射速度

注射速度越快,越容易造成分子链的取向程度增加,从而引起更大的取向应力。

但注射速度过低,塑料熔体进入模腔后,可能先后分层而形成熔化痕,产生应力集中线,易产生应力开裂。

所以注射速度以适中为宜。

最好采用变速注射,在速度逐渐减小下结束充模。

⑥保压时间

保压时间越长,会增大塑料熔体的剪切作用,从而产生更大的弹性形变,冻结更多的取向应力。

所以,取向应力随保压时间延长和补料量增加而显着增大。

⑦开模残余压力

应适当调整注射压力和保压时间,使开模时模内的残余压力接近于大气压力,从而避免产生更大的脱模内应力。

(3)塑料制品的热处理

塑料制品的热处理是指将成型制品在一定温度下停留一段时间而消除内应力的方法。

热处理是消除塑料制品内取向应力的最好方法。

对于高聚物分子链的刚性较大、玻璃化温度较高的注塑件;对壁厚较大和带金属嵌件的制件;对使用温度范围较宽和尺寸精度要求较高的制件;时内应力较大而又不易自消的制件以及经过机械加工的制件都必须进行热处理。

对制件进行热处理,可以使高聚物分子由不平衡构象向平衡构象转变,使强迫冻结的处于不稳定的高弹形变获得能量而进行热松弛,从而降低或基本消除内应力。

常采用的热处理温度高于制件使用温度10~20℃或低于热变形温度5~10℃。

热处理时间取决于塑料种类、制件厚度、热处理温度和注塑条件。

一般厚度的制件,热处理1~2小时即可,随着制件厚度增大,热处理时间应适当延长。

提高热处理温度和延长热处理时间具有相似的效果,但温度的效果更明显些。

热处理方法是将制件放入水、甘油、矿物油、乙二醇和液体石蜡等液体介质中,或放入空气循环烘箱中加热到指定温度,并在该温度下停留一定时间,然后缓慢冷却到室温。

实验表明,脱模后的制件立即进行热处理,对降低内应力、改善制件性能的效果更明显。

此外,提高模具温度,延长制件在模内冷却时间,脱模后进行保温处理都有类似热处理的作用。

尽管热处理是降低制件内应力的有效办法之一,但热处理通常只能将内应力降低到制件使用条件允许的范围,很难完全消除内应力。

对PC制件进行较长时间的热处理时,PC分子链有可能进行有序的重排,甚至结晶,从而降低冲击韧性,使缺口冲击强度降低。

因而,不应把热处理作为降低制件内应力的唯一措施。

(4)塑料制品的设计

①塑料制品的形状和尺寸

在具体设计塑料制品时,为了有效地分散内应力,应遵循这样的原则:

制品外形应尽可能保持连续性,避免锐角、直角、缺口及突然扩大或缩小。

对于塑料制品的边缘处应设计成圆角,其中内圆角半径应大于相邻两壁中薄者厚度的70%以上;外圆角半径则根据制品形状而确定。

对于壁厚相差较大的部位,因冷却速度不同,易产生冷却内应力及取向内应力。

因此,应设计成壁厚尽可能均匀的制件,如必须壁厚不均匀,则要进行壁厚差异的渐变过渡。

②合理设计金属嵌件

塑料与金属的热膨胀系数相差5~10倍,因而带金属嵌件的塑料制品在冷却时,两者形成的收缩程度不同,因塑料的收缩比较大而紧紧抱住金属嵌件,在嵌件周围的塑料内层受压应力,而外层受拉应力作用,产生应力集中现象。

在具体设汁嵌件时,应注意如下几点,以帮助减小或消除内应力。

a.尽可能选择塑料件作为嵌件。

b.尽可能选择与塑料热膨胀系数相差小的金属材料做嵌件材料,如铝、铝合金及铜等。

c.在金属嵌件上涂覆一层橡胶或聚氨酯弹性缓冲层,并保证成型时涂覆层不熔化,可降低两者收缩差。

d.对金属嵌件进行表面脱脂化处理,可以防止油脂加速制品的应力开裂。

e.金属嵌件进行适当的预热处理。

f.金属嵌件周围

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2