灯珠结温和散热面积计算理论Word文档格式.docx

上传人:b****1 文档编号:1297789 上传时间:2023-04-30 格式:DOCX 页数:11 大小:36.51KB
下载 相关 举报
灯珠结温和散热面积计算理论Word文档格式.docx_第1页
第1页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第2页
第2页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第3页
第3页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第4页
第4页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第5页
第5页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第6页
第6页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第7页
第7页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第8页
第8页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第9页
第9页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第10页
第10页 / 共11页
灯珠结温和散热面积计算理论Word文档格式.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

灯珠结温和散热面积计算理论Word文档格式.docx

《灯珠结温和散热面积计算理论Word文档格式.docx》由会员分享,可在线阅读,更多相关《灯珠结温和散热面积计算理论Word文档格式.docx(11页珍藏版)》请在冰点文库上搜索。

灯珠结温和散热面积计算理论Word文档格式.docx

在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。

若管芯传导到散热垫底面的热阻为RJC(LED的热阻)、散热垫传导到PCB面层敷铜层的热阻为RCB、PCB传导到环境空气的热阻为RBA,则从管芯的结温TJ传导到空气TA的总热阻RJA与各热阻关系为:

RJA=RJC+RCB+RBA。

各热阻的单位是℃/W。

可以这样理解:

热阻越小,其导热性能越好,即散热性能越好。

如果LED的散热垫与PCB的敷铜层采用回流焊焊在一起,则RCB=0,则上式可写成:

RJA=RJC+RBA

散热的计算公式

若结温为TJ、环境温度为TA、LED的功耗为PD,则RJA与TJ、TA及PD的关系为:

RJA=(TJ-TA)/PD

(1)式中PD的单位是W。

PD与LED的正向压降VF及LED的正向电流IF的关系为:

PD=VF×

IF

(2)

如果已测出LED散热垫的温度TC,则

(1)式可写成:

RJA=(TJ-TC)/PD+(TC-TA)/PD

则RJC=(TJ-TC)/PD(3)RBA=(TC-TA)/PD(4)

在散热计算中,当选择了大功率LED后,从数据资料中可找到其RJC值;

当确定LED的正向电流IF后,根据LED的VF可计算出PD;

若已测出TC的温度,则按(3)式可求出TJ来。

在测TC前,先要做一个实验板(选择某种PCB、确定一定的面积)、焊上LED、输入IF电流,等稳定后,用K型热电偶点温度计测LED的散热垫温度TC。

在(4)式中,TC及TA可以测出,PD可以求出,则RBA值可以计算出来。

若计算出TJ来,代入

(1)式可求出RJA。

这种通过试验、计算出TJ方法是基于用某种PCB及一定散热面积。

如果计算出来的TJ小于要求(或等于)TJmax,则可认为选择的PCB及面积合适;

若计算来的TJ大于要求的TJmax,则要更换散热性能更好的PCB,或者增加PCB的散热面积。

另外,若选择的LED的RJC值太大,在设计上也可以更换性能上更好并且RJC值更小的大功率LED,使满足计算出来的TJ≤TJmax。

这一点在计算举例中说明。

各种不同的PCB目前应用与大功率LED作散热的PCB有三种:

普通双面敷铜板(FR4)、铝合金基敷铜板(MCPCB)、柔性薄膜PCB用胶粘在铝合金板上的PCB。

MCPCB的结构如图7所示。

各层的厚度尺寸如表3所示。

其散热效果与铜层及金属层厚如度尺寸及绝缘介质的导热性有关。

一般采用35µ

m铜层及1.5mm铝合金的MCPCB。

柔*PCB粘在铝合金板上的结构如图8所示。

一般采用的各层厚度尺寸如表4所示。

1~3W星状LED采用此结构。

采用高导热性介质的MCPCB有最好的散热性能,但价格较贵。

计算举例这里采用了NICHIA公司的测量TC的实例中取部分数据作为计算举例。

已知条件如下:

LED:

3W白光LED、型号MCCW022、RJC=16℃/W。

K型热电偶点温度计测量头焊在散热垫上。

PCB试验板:

双层敷铜板(40×

40mm)、t=1.6mm、焊接面铜层面积1180mm2背面铜层面积1600mm2。

LED工作状态:

IF=500mA、VF=3.97V。

用K型热电偶点温度计测TC,TC=71℃。

测试时环境温度TA=25℃.

1.TJ计算

TJ=RJC×

PD+TC=RJC(IF×

VF)+TC

TJ=16℃/W(500mA×

3.97V)+71℃=103℃

2.RBA计算

RJA=(TC-TA)/PD=(71℃-25℃)/1.99W=23.1℃/W

3.RJA计算

RJA=RJC+RBA=16℃/W+23.1℃/W=39.1℃/W

如果设计的TJmax=90℃,则按上述条件计算出来的TJ不能满足设计要求,需要改换散热更好的PCB或增大散热面积,并再一次试验及计算,直到满足TJ≤TJmax为止。

另外一种方法是,在采用的LED的RJC值太大时,若更换新型同类产品RJC=9℃/W(IF=500mA时VF=3.65V),其他条件不变,TJ计算为:

TJ=9℃/W(500mA×

3.65V)+71℃=87.4℃

上式计算中71℃有一些误差,应焊上新的9℃/W的LED重新测TC(测出的值比71℃略小)。

这对计算影响不大。

采用了9℃/W的LED后不用改变PCB材质及面积,其TJ符合设计的要求。

PCB背面加散热片

若计算出来的TJ比设计要求的TJmax大得多,而且在结构上又不允许增加面积时,可考虑将PCB背面粘在"

∪"

形的铝型材上(或铝板冲压件上),或粘在散热片上,如图10所示。

这两种方法是在多个大功率LED的灯具设计中常用的。

例如,上述计算举例中,在计算出TJ=103℃的PCB背后粘贴一个10℃/W的散热片,其TJ降到80℃左右。

这里要说明的是,上述TC是在室温条件下测得的(室温一般15~30℃)。

若LED灯使用的环境温度TA大于室温时,则实际的TJ要比在室温测量后计算的TJ要高,所以在设计时要考虑这个因素。

若测试时在恒温箱中进行,其温度调到使用时最高环境温度,为最佳。

另外,PCB是水平安装还是垂直安装,其散热条件不同,对测TC有一定影响,灯具的外壳材料、尺寸及有无散热孔对散热也有影响。

因此,在设计时要留有余地。

1、能够熟练使用热分析软件进行设计与仿真,如:

Fluent、Ansys、Desingspace等;

2、熟练使用zemax、lightools、tracepro等光学设计软件中的一种或几种。

 

二、计算公式

导热公式

导热过程中传递的热量按照Fourier导热定律计算:

Q=λA(Th-Tc)/δ

其中:

A为与热量传递方向垂直的面积,单位为m2;

Th与Tc分别为高温与低温面的温度,

δ为两个面之间的距离,单位为m。

λ为材料的导热系数,单位为W/(m*℃),表示了该材料导热能力的大小。

一般说,固体的导热系数大于液体,液体的大于气体。

例如常温下纯铜的导热系数高达400W/(m*℃),纯铝的导热系数为236W/(m*℃),水的导热系数为0.6W/(m*℃),而空气仅0.025W/(m*℃)左右。

铝的导热系数高且密度低,所以散热器基本都采用铝合金加工,但在一些大功率芯片散热中,为了提升散热性能,常采用铝散热器嵌铜块或者铜散热器。

对流换热公式

对流换热的热量按照牛顿冷却定律计算:

Q=hA(Tw-Tair)

A为与热量传递方向垂直的面积,单位为m2;

Th与Tc分别为固体壁面与流体的温度,h是对流换热系数,自然对流时换热系数在1~10W/(℃*m2)量级,实际应用时一般不会超过3~5W/(℃*m2);

强制对流时换热系数在10~100W/(℃*m2)量级,实际应用时一般不会超过30W/(℃*m2)。

热阻的概念公式

对导热和对流换热的公式进行变换:

Fourier导热公式:

Q=(Th-Tc)/[δ/(λA)]

Newton对流换热公式:

Q=αA(Tw-Tair)Q=(Tw-Tair)/(1/αA)

热量传递过程中,温度差是过程的动力,好象电学中的电压,换热

量是被传递的量,好像电学中的电流,因而上式中的分母可以用电学中

的电阻概念来理解成导热过程的阻力,称为热阻(thermalresistance),

单位为℃/W,其物理意义就是传递1W的热量需要多少度温差。

在热设

计中将热阻标记为R或θ。

δ/(λA)是导热热阻,1/αA是对流换热热阻。

器件的资料中一般都会提供器件的Rjc和Rja热阻,Rjc是器件的结到壳的

导热热阻;

Rja是器件的结到壳导热热阻和壳与外界环境的对流换热热阻

之和。

这些热阻参数可以根据实验测试获得,也可以根据详细的器件内

部结构计算得到。

根据这些热阻参数和器件的热耗,就可以计算得到器

件的结温。

对于高功率LED,短时间运行其最高允许结温为125℃,而长期使用结温不允许超过110℃,对于低功率LED,其最高允许结温为80℃。

在散热设计中我们通常考虑几个方面:

导热材料,传导介质,热能位置,吸热界面,热流方向,环境温度等等。

一,LED灯具热分析公式;

Tj≧Ta+(Rthb-a×

P)+(Rthj-sp×

Pled)Rthb-a≦(Tj-Ta-Rthj-sp*Pled)/P

式中:

Tj---------LED理论结点温度,单位:

℃Ta----使用环境温度,单位:

Rthb-a----灯具散热部件总热阻,单位:

℃/W;

Pled-----单颗LED功率,单位:

W;

P----LED总功率,单位:

WRthj-sp----单颗LED热阻.单位:

”程式XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

二,散热计算公式:

RJA=RJC+RCB+RBARJA=(TJ-TA)/PDPD=VF×

IF

RJC=(TJ-TC)/PD

RBA=(TC-TA)/PDTJ=RJC×

VF)+TC

TJ是结温;

TA是工作环境温度;

TC是散热垫底部的温度;

RJA是总热阻;

RJC是LED热阻;

RCB敷铜层热阻;

RBA是环境空气热阻;

三,热阻(表征阻止热量传递的能力的综合参量),单位℃/W,方程式中用“R”或“θ”表示。

导热热阻:

R=L/(KA),L为平板厚度;

A为平板垂直于热流方向的截面积;

K为平板材料的导热率。

对流换热热阻:

R=1/(hA),h为对流换热系数,A为换热面积;

辐射热阻:

1,对于两个物体表面的辐射:

R=1/(A1F1-2)或1/(A2F2-1)

2,对于物体与环境大气的辐射:

R=1/(hrA)

A,A1,A2为物体互辐射的表面积;

F1-2和F2-1为辐射角系数;

hr为辐射换热系数;

以上三种热阻或综合热阻也可以用以下的公式定义:

R12=(T1-T2)/Q(T1>T2)

T1,T2为某两点位置的温度;

Q为通过的1,2点的传导热速率,则R12为1,2点件的热阻。

虽然热阻单位不同但其值是等效的,例:

1℃/W=1K/W

四,接触热阻,单位㎡*K/W,在公式中用Rc表示;

对于单位面积的交界面接触热阻定义为:

Rc=(T2A-T2B)/Q,其中,T2A,T2B为两交接面的表面温度,Q为通过交接面的传热速率。

减少触热阻的措施:

1.增加借组部分面积,增加结合压力,减小结合面粗糙度,提高结合面的平面度,

2.选择导热率达界面流体,自然状态下界面空隙的流体多为空气,而空气的导热系数极低(0.023W/m*k)而在界面涂上有较高的导热能力的物体

五,散热器的设计及选择;

①;

定义热边界条件(系统总的热耗散功率Q,最大工作的温度TA,元器最大允许工作温度TJ)

②;

估算系统热阻Rja=(Tj-Ta)/Q

③;

估算散热热阻Rba=(Tj-Ta)/Q-Rjb

④;

设计/选择散热器(根据估算的Rba为初始目标进行散热器的设计或从散热设备制造商提供的规格数据选择合适的散热器)

六,影响散热器性能的主要因素:

1,散热器的材料

材料

热传导率K(W/m.K)

比热容J/kgK-1℃-1

密度(g/cm3)

热膨胀系数

1/℃

银silver

429

0.24

10.5

0.0000196

铜cooper

401

0.39

8.69

0.0000166

金gold

317

1.29

19.32

0.0000144

铝aluminum

237

0.9

2.7

氧化铝0.0000042

AL6061铝合金

155

0.0000236

AL6063铝合金

201

0.0000234

ADC12

96

AL1070铝合金

226

AL1050铝合金

209

diamond钻石

2300

3.52

80

7.3~7.7

0.00001176

67

7.31

0.0000023

34.8

11.3

钢材

58.2

7.8

铝合金

203

PVC

0.19

1.34

PA

0.23

1.14

松木

0.17

0.45

单层玻璃

2.5

2.4

陶瓷(千如)

6.79

石墨

水平:

700垂直:

30

720

1.8-3.5

0.556

4.18

1

空气(25℃)

0.024

Cp=1.0032(J/g.c)

Cv=0.7106,

r=1.412

1.293

110.00118

硅脂

3.6

PC

0.2

1.05

ABS

0.25

PMMA

0.18

1.18

50.2(45号钢

460

7.85

瓷砖

1.99

水泥浆

不锈钢

17

7.9

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2