热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx

上传人:b****8 文档编号:13129173 上传时间:2023-06-11 格式:DOCX 页数:31 大小:635.56KB
下载 相关 举报
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第1页
第1页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第2页
第2页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第3页
第3页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第4页
第4页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第5页
第5页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第6页
第6页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第7页
第7页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第8页
第8页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第9页
第9页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第10页
第10页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第11页
第11页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第12页
第12页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第13页
第13页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第14页
第14页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第15页
第15页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第16页
第16页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第17页
第17页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第18页
第18页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第19页
第19页 / 共31页
热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx

《热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx》由会员分享,可在线阅读,更多相关《热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx(31页珍藏版)》请在冰点文库上搜索。

热能 外文翻译 外文文献 英文文献 火力发电厂先进的蒸汽温度调节控制算法.docx

热能外文翻译外文文献英文文献火力发电厂先进的蒸汽温度调节控制算法

英文翻译部分

英文部分:

Advancedcontrolalgorithmsforsteamtemperatureregulationofthermalpowerplants

A.Sanchez-Lopez,G.Arroyo-Figueroa*,A.Villavicencio-Ramirez

InstitutodeInvestigacionesElectricas,DivisiondeSistemasdeControl,ReformaNo.

113,ColoniaPalmira,Cuernavaca,Morelos62490,Mexico

Received5February2003;revised6April2004;accepted8July2004

Abstract

Amodel-basedcontroller(DynamicMatrixControl)andanintelligentcontroller(FuzzyLogicControl)havebeendesignedandimplementedforsteamtemperatureregulationofa300MWthermalpowerplant.Thetemperatureregulationisconsideredthemostdemandedcontrolloopinthesteamgenerationprocess.BothproposedcontrollersDynamicMatrixController(DMC)andFuzzyLogicController(FLC)wereappliedtoregulatesuperheatedandreheatedsteamtemperature.TheresultsshowthattheFLCcontrollerhasabetterperformancethanadvancedmodel-basedcontroller,suchasDMCoraconventionalPIDcontroller.Themainbenefitsarethereductionoftheovershootandthetighterregulationofthesteamtemperatures.FLCcontrollerscanachievegoodresultforcomplexnonlinearprocesseswithdynamicvariationorwithlongdelaytimes.

Keywords:

Thermalpowerplants;Powerplantcontrol;Steamtemperatureregulation;Predictivecontrol;Fuzzylogiccontrol

 

1.Introduction

Currenteconomicandenvironmentfactorsputastringerrequirementonthermalpowerplantstobeoperatedatahighlevelofefficiencyandsafetyatminimumcost.Inaddition,thereareanincrementoftheageofthermalplantsthataffectedthereliabilityandperformanceoftheplants.Thesefactorshaveincreasedthecomplexityofpowercontrolsystemsoperations[1,2].

Currently,thecomputerandinformationtechnologyhavebeenextensivelyusedinthermalplantprocessoperationandcontrol.Distributedcontrolsystems(DCS)andmanagementinformationsystems(MIS)havebeenplayinganimportantroletoshow

theplantstatus.ThemainfunctionofDCSistohandlenormaldisturbancesandmaintainkeyprocessparametersinpre-specifiedlocaloptimallevels.Despitetheirgreatsuccess,DCShavelittlefunctionforabnormalandnon-routineoperationbecausetheclassicalproportional-integral-derivative(PID)controliswidelyusedbytheDCS.PIDcontrollersexhibitpoorperformancewhenappliedtoprocesscontainingunknownnon-linearityandtimedelays.ThecomplexityoftheseproblemsandthedifficultiesinimplementingconventionalcontrollerstoeliminatevariationsinPIDtuningmotivatetheuseofotherkindofcontrollers,suchasmodel-basedcontrollersandintelligentcontrollers.

Thispaperproposesamodel-basedcontrollersuchasDynamicMatrixController(DMC)andanintelligentcontrollerbasedonfuzzylogicasanalternativecontrolstrategyappliedtoregulatethesteamtemperatureofthethermalpowerplant.Thetemperatureregulationisconsideredthemostdemandedcontrolloopinthesteamgenerationprocess.Thesteamtemperaturedeviationmustbekeptwithinatightvariationrankinordertoassuresafeoperation,improveefficiencyandincreasethelifespanoftheequipment.Moreover,therearemanymutualinteractionsbetweensteamtemperaturecontrolloopsthathavebeenconsidered.Otherimportantfactoristhetimedelay.Itiswellknowthatthetimedelaymakesthetemperatureloopshardtotune.ThecomplexityoftheseproblemsanddifficultiestoimplementPIDconventionalcontrollersmotivatetoresearchtheuseofmodelpredictivecontrollerssuchastheDMCorintelligentcontroltechniquessuchastheFuzzyLogicController(FLC)asasolutionforcontrollingsystemsinwhichtimedelays,andnon-linearbehaviorneedtobeaddressed[3,4].Thepaperisorganizedasfollows.AbriefdescriptionoftheDMCispresentedinSection2.TheFLCdesignisdescribedinSection3.Section4presentstheimplementationofbothcontrollersDMCandFLCtoregulatethesuperheatedandreheatedsteamtemperatureofathermalpowerplant.TheperformanceoftheFLCcontrollerwasevaluatedagainsttwoothercontrollers,theconventionalPIDcontrollerandthepredictiveDMCcontroller.ResultsarepresentedinSection5.Finally,themainsetofconclusionsaccordingtotheanalysisandresultsderivedfromtheperformanceofcontrollersispresentedinSection6.

2.Dynamicmatrixcontrol

TheDMCisakindofmodel-basedpredictivecontrol(Fig.1).Thiscontrollerwasdevelopedtoimprovecontrolofoilrefinementprocesses[5].TheDMCandotherpredictivecontroltechniquessuchastheGeneralizedPredictiveControl[6]orSmithpredictor[6]algorithmsarebasedonpastandpresentinformationofcontrolledandmanipulatedvariablestopredictthefuturestateoftheprocess.

TheDMCisbasedonatimedomainmodel.Thismodelisutilizedtopredictthefuturebehavioroftheprocessinadefinedtimehorizon(Fig.2).Basedonthispreceptthecontrolalgorithmprovidesawaytodefinetheprocessbehaviorinthetime,predictingthecontrolledvariablestrajectoryinfunctionofpreviouscontrolactionsandcurrentvaluesoftheprocess[7].Controlledbehaviorcanbeobtainedcalculatingthesuitablefuturecontrolactions.Toobtaintheprocessmodel,thesystemis

perturbedwithanunitarystepsignalasaninputdisturbance(Fig.3).

Thismethodisthemostcommonandeasymeantoobtainthedynamicmatrixcoefficientsoftheprocess.Thecontroltechniqueincludesthefollowingsprocedures:

(a)ObtainingtheDynamicMatrixmodeloftheprocess.Inthisstage,astepsignalisappliedtotheinputoftheprocess.Themeasurementsobtainedwiththisactivityrepresenttheprocessbehavioraswellasthecoefficientsoftheprocessstateintime.Thisstepisperformedjustoncebeforetheoperationofthecontrolalgorithm

intheprocess.

(b)Determinationofdeviationsincontrolledvariables.Inthisstep,thedeviationbetweenthecontrolledvariablesoftheprocessandtheirrespectivesetpointsismeasured.

(c)Projectionoffuturestatesoftheprocess.Thefuturebehaviorofeachcontrolledvariableisdefinedinavector.Thisvectorisbasedonpreviouscontrolactionsandcurrentvaluesoftheprocess.

(d)Calculationofcontrolmovements.Controlmovementsareobtainedusingthefuturevectoroferrorandthedynamicmatrixoftheprocess.Theequationdevelopedtoobtainthecontrolmovementsisshownbelow:

whereArepresentsthedynamicmatrix,ATthetransposematrixofAXthevectoroffuturestatesoftheprocess,faweightingfactor,ItheimagematrixandDhefuturecontrolactions.FurtherdetailsaboutthisequationarefoundinRef.[5].

(e)Controlmovements’implementation.Inthisstepthefirstelementofthecontrolmovements’vectorisappliedtomanipulatedvariables.ADMCcontroller

allowsdesignerstheuseoftimedomaininformationtocreateaprocessmodel.Themathematicalmethodforpredictionmatchesthepredictedbehaviorandtheactualbehavioroftheprocesstopredictthenextstateoftheprocess.However,theprocessmodelisnotcontinuouslyupdatedbecausethisinvolvesrecalculationsthatcanleadtoanoverloadofprocessorsandperformancedegradation.Discrepanciesintherealbehavioroftheprocessandthepredictedstateareconsideredonlyinthecurrentcalculationofcontrolmovements.Thus,thecontrollerisadjustedcontinuouslybasedondeviationsofthepredictedandrealbehaviorwhilethemodelremainsstatic.

3.Fuzzylogiccontrol

Fuzzycontrolisusedwhentheprocessfollowssomegeneraloperatingcharacteristicandadetailedprocessunderstandingisunknownorprocessmodelbecomeoverlycomplex.Thecapabilitytoqualitativelycapturetheattributesofacontrolsystembasedonobservablephenomenaandthecapabilitytomodelthenonlinearitiesfortheprocessarethemainfeaturesoffuzzycontrol.TheabilityofFuzzyLogictocapturesystemdynamicsqualitativelyandexecutethisqualitativeschemainarealtimesituationisanattractivefeaturefortemperaturecontrolsystems[8].TheessentialpartoftheFLCisasetoflinguisticcontrolrulesrelatedtothedualconceptsoffuzzyimplicationandthecompositionalruleofinference[9].

Essentially,thefuzzycontrollerprovidesanalgorithmthatcanconvertthelinguisticcontrolstrategy,basedonexpertknowledge,intoanautomaticcontrolstrategy.Ingeneral,thebasicconfigurationofafuzzycontrollerhasfivemainmodulesasitisshowninFig.4.

Inthefirstmodule,aquantizationmoduleconvertstodiscretevaluesandnormalizestheuniverseofdiscourseof

variousmanipulatedvariables(Input).Then,anumericalfuzzyconvertermapscrispdatatofuzzynumberscharacterizedbyafuzzysetandalinguisticlabel(Fuzzification).Inthenextmodule,theinferenceengineappliesthecompositionalruleofinferencetotherulebaseinordertoderivefuzzyvaluesofthecontrolsignalfromtheinputfactsofthecontroller.Finally,asymbolic-numericalinterfaceknown

asdefuzzificationmoduleprovidesanumericalvalueofthecontrolsignalorincrementinthecontrolaction.Thisisintegratedbyafuzzy-numericalconverterandadequantizationmodule(output).

ThusthenecessarystepstobuildafuzzycontrolsystemareRefs.[10,11]:

(a)inputandoutputvariablesrepresentationinlinguistictermswithinadiscourseuniverse;

(b)definitionofmembershipfunctionsthatwillconverttheprocessinputvariablestofuzzysets;

(c)knowledgebaseconfiguration;

(d)designoftheinferenceunitthatwillrelateinputdatatofuzzyrulesoftheknowledgebase;and

(e)designofthemodulethatwillconvertthefuzzycontrolactionsintophysicalcontrolactions.

4.Im

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2