锂电池材料.docx

上传人:b****1 文档编号:13372649 上传时间:2023-06-13 格式:DOCX 页数:21 大小:38.11KB
下载 相关 举报
锂电池材料.docx_第1页
第1页 / 共21页
锂电池材料.docx_第2页
第2页 / 共21页
锂电池材料.docx_第3页
第3页 / 共21页
锂电池材料.docx_第4页
第4页 / 共21页
锂电池材料.docx_第5页
第5页 / 共21页
锂电池材料.docx_第6页
第6页 / 共21页
锂电池材料.docx_第7页
第7页 / 共21页
锂电池材料.docx_第8页
第8页 / 共21页
锂电池材料.docx_第9页
第9页 / 共21页
锂电池材料.docx_第10页
第10页 / 共21页
锂电池材料.docx_第11页
第11页 / 共21页
锂电池材料.docx_第12页
第12页 / 共21页
锂电池材料.docx_第13页
第13页 / 共21页
锂电池材料.docx_第14页
第14页 / 共21页
锂电池材料.docx_第15页
第15页 / 共21页
锂电池材料.docx_第16页
第16页 / 共21页
锂电池材料.docx_第17页
第17页 / 共21页
锂电池材料.docx_第18页
第18页 / 共21页
锂电池材料.docx_第19页
第19页 / 共21页
锂电池材料.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

锂电池材料.docx

《锂电池材料.docx》由会员分享,可在线阅读,更多相关《锂电池材料.docx(21页珍藏版)》请在冰点文库上搜索。

锂电池材料.docx

锂电池材料

锂电池材料

锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。

最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:

Li+MnO2=LiMnO2该反应为氧化还原反应,放电。

由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。

所以,锂电池长期没有得到应用。

现在锂电池已经成为了主流。

锂电池概述

  锂电池(Lithiumbattery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的电池。

锂电池大致可分为两类:

锂金属电池和锂离子电池。

锂金属电池通常是不可充电的,且内含金属态的锂。

锂离子电池不含有金属态的锂,并且是可以充电的。

电池化学反应原理

  锂金属电池   锂金属电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。

最早出现的锂电池使用以下反应:

Li+MnO2=LiMnO2,该反应为氧化还原反应,放电。

  正极上发生的反应为  LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)  负极上发生的反应为  6C+XLi++Xe====LixC6  电池总反应:

LiCoO2+6C=Li1-xCoO2+LixC6  锂离子电池  正极  正极材料:

可选的正极材料很多,目前主流产品多采用锂铁磷酸盐。

不同的正极材料对照:

  ?

?

?

LiCoO23.7V140mAh/g

Li2Mn2O44.0V100mAh/g

LiFePO43.3V100mAh/g

Li2FePO4F3.6V115mAh/g

正极反应:

放电时锂离子嵌入,充电时锂离子脱嵌。

充电时:

LiFePO4→Li1-xFePO4+xLi++xe-放电时:

Li1-xFePO4+xLi++xe-→LiFePO4  负极  负极材料:

多采用石墨。

新的研究发现钛酸盐可能是更好的材料。

负极反应:

放电时锂离子脱插,充电时锂离子插入。

充电时:

xLi++xe-+6C→LixC6放电时:

LixC6→xLi++xe-+6C

早期研发

  最早得以应用于心脏起搏器中。

锂电池的自放电率极低,放电电压平缓。

使得起植入人体的搏器能够长期运作而不用重新充电。

锂电池一般有高于3.0伏的标称电压,更适合作集成电路电源。

二氧化锰电池,就广泛用于计算器,数位相机、手表中。

  为了开发出性能更优异的品种,人们对各种材料进行了研究。

从而制造出前所未有的产品。

比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。

它们的正极活性物质同时也是电解液的溶剂。

这种结构只有在非水溶液的电化学体系才会出现。

所以,锂电池的研究,也促进了非水体系电化学理论的发展。

除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。

  1992年Sony成功开发锂离子电池。

它的实用化,使人们的行动电话、笔记本、计算器等携带型电子设备重量和体积大大减小。

使用时间大大延长。

由于锂离子电池中不含有重金属镉,与镍镉电池相比,大大减少了对环境的污染。

锂电池发展进程

  11970年代埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。

  21982年伊利诺伊理工大学(theIllinoisInstituteofTechnology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。

与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。

首个可用的锂离子石墨电极由贝尔实验室试制成功。

  31983年M.Thackeray、J.Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。

其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

  41989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。

  51991年索尼公司发布首个商用锂离子电池。

随后,锂离子电池革新了消费电子产品的面貌。

  61996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁(LiFePO4),比传统的正极材料更具优越性,因此已成为当前主流的正极材料。

  由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行。

但是由于锂电池的很多优点,锂电池被广泛的应用在电子仪表、数码和家电产品上。

但是,锂电池多数是二次电池,也有一次性电池。

少数的二次电池的寿命和安全性比较差。

  后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。

当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。

而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。

同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。

回正极的锂离子越多,放电容量越高。

我们通常所说的电池容量指的就是放电容量。

在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。

Li-ionBatteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。

所以Li-ionBatteries又叫摇椅式电池。

  随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。

1998年,天津电源研究所开始商业化生产锂离子电池。

习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。

现在锂离子电池已经成为了主流。

锂电池材料

  锂电池负极材料大体分为以下几种:

  第一种是碳负极材料:

   目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。

  第二种是锡基负极材料:

  锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。

氧化物是指各种价态金属锡的氧化物。

目前没有商业化产品。

  第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。

  第四种是合金类负极材料:

  包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。

  第五种是纳米级负极材料:

纳米碳管、纳米合金材料。

  第六种纳米材料是纳米氧化物材料:

目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。

锂电池鼓壳

  一、锂电池外壳特性  锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

  锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

  锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

  保护措施  锂电池芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。

当电芯电压低于2.4V时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。

锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:

充电电压上限、放电电压下限、及电流上限三项。

一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。

但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。

要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

  二、爆炸的原因分析  1、内部极化较大  2、极片吸水,与电解液发生反应气鼓  3、电解液本身的质量,性能问题  4、注液时候注液量达不到工艺要求  5、装配制程中激光焊焊接密封性能差,漏气,测漏气时漏测  6、粉尘,极片粉尘首先易导致微短路  7、正负极片较工艺范围偏厚,入壳难  8、注液封口问题,钢珠密封性能不好导致气鼓  9、壳体来料存在壳壁偏厚,壳体变形影响厚度.  三、爆炸类型分析  爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。

此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。

消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方防爆重点放在面。

其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。

电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

  四、设计规范  由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。

由于,电路板的故障率一般都远高于一亿分之一。

因此,电池系统设计时,必须有两道以上的安全防线。

常见的错误设计是用充电器(adaptor)直接去充电池组。

这样将过充的防护重任,完全交给电池组上的保护板。

虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。

电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。

常见的电池充电系统方块图如下,包含充电器及电池组两大部分。

①充电器又包含适配器(Adaptor)及充电控制器两部分。

适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。

②电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

下面图中适配器交流变直流文字方块作用:

电控制器限流限压。

充电器文字方块作用:

保护板过充、过放、过流等防护。

电池组文字方块作用:

限流片。

电池芯以手机电池系统为例,过充防护系统利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。

第二道防护是保护板上的过充防护功能,一般设定为4.3V。

这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。

过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。

由于过放电只会发生在电子产品被使用的过程。

因此,一般设计是由该电子产品的线路板来提供第一道防护,电池组上的保护板则提供第二道防护。

当电子产品侦测到供电电压低于3.0V时,应该自动关机。

如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。

总论:

电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。

把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。

结果,劣币驱逐良币,市面上出现了许多劣质充电器。

这使得过充防护失去了第一道也是最重要的一道防线。

而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。

在有些情况下,电池组内也会有充电控制器的设计。

例如:

许多笔记型计算机的外加电池棒,就有充电控制器。

这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。

因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。

另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线:

如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。

电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。

由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。

而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

铝壳电芯与钢壳电芯安全性比较铝壳相对于钢壳具有很高的安全优势。

  锂电池正、负极碳管?

锂离子电池正、负极活性材内为何要加VGCF碳管?

  1.不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%(理论值:

10.5%)膨胀收缩率,而像LFP正极材料有6%(理论值:

2%左右)膨胀收收率。

当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。

因此循环使用寿命下降。

VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF碳管架桥连接,电子与离子传输不会间断。

锂原电池

  锂--二氧化锰电池(CR)  以金属锂为负极,以经过热处理的二氧化锰为正极,隔离膜采用PP或PE膜,圆柱型电池与锂离子电池隔膜一样,电解液为高氯酸锂的有机溶液,圆柱式或扣式。

电池需要在湿度≤1%的干燥环境下生产。

  特点:

低自放电率,年自放电可≤1%,全密封(金属焊接,lazerseal)电池可满足10年寿命,半密封电池一般是5年,如果工作控制不好的话,还达不到这个寿命。

在圆柱型锂锰电池开发方面做得比较好的亿纬,目前已实现自动化生产,电池可以做到短路、过放电等测试不爆炸。

  一般在台式电脑的主板上,有一个扣式的锂电池,提供微弱的电流,可以正常使用3年左右,一些宾馆的门禁卡、仪器仪表等也使用锂--二氧化锰电池,近年来使用量逐年下降。

  锂--亚硫酰氯电池  以金属锂为负极,正极和电解液为亚硫酰氯(氯化亚砜),圆柱式电池,装配完成即有电,电压3.6V,是工作电压最平稳的电池种类之一,也是目前单位体积(质量)容量最高的电池。

适合在不能经常维护的电子仪器设备上使用,提供细微的电流。

  其他锂电池还有锂--硫化亚铁电池、锂--二氧化硫电池等。

锂离子电池

  锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。

其中,液态锂离子电池是指Li+嵌入化合物为正、负极的二次电池。

正极采用锂化合物LiCoO?

或LiMn?

O?

,负极采用锂-碳层间化合物。

锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。

手机锂离子电池

  1992年Sony成功开发锂离子电池。

它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。

使用时间大大延长。

由于锂离子电池中不含有重金属镉,与镍镉电池相比,大大减少了对环境的污染。

  锂电池的污染还是有的。

锂电池的结构

  锂电池通常有两种外型:

圆柱型和方型。

电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。

正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)方形电池结构

圆形电池结构

及铝箔组成的电流收集极。

负极由石墨化碳材料和铜箔组成的电流收集极组成。

电池内充有有机电解质溶液。

另外还装有安全阀和PTC元件(部分圆柱式使用),以便电池在不正常状态及输出短路时保护电池不受损坏。

  单节锂电池的电压为3.7V(磷酸亚铁锂正极的为3.2V),电池容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。

锂电池的应用

  随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。

锂电池随之进入了大规模的实用阶段。

  最早得以应用的是锂亚原电池,用于心脏起搏器中。

由于锂亚电池的自放电率极低,放电电压十分平缓。

使得起搏器植入人体长期使用成为可能。

  锂锰电池一般有高于3.0伏的标称电压,更适合作集成电路电源,广泛用于计算机、计算器、手表中。

  现在,锂离子电池大量应用在手机、笔记本电脑、电动工具、电动车、路灯备用电源、航灯、家用小电器上,可以说是最大的应用群体。

研究与发展前景

  为了开发出性能更优异的品种,人们对各种材料进行了研究。

从而制阿联酋锂电池公交车(荷兰制造)

造出前所未有的产品。

比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。

它们的正极活性物质同时也是电解液的溶剂。

这种结构只有在非水溶液的电化学体系才会出现。

所以,锂电池的研究,也促进了非水体系电化学理论的发展。

除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。

  锂电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,邮电通讯的不间断电源,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。

  锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。

目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在侧面

人造卫星、航空航天和储能方面得到应用。

随着能源的紧缺和世界的环保方面的压力。

锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料电池的出现,更推动了锂电池产业的发展和应用。

“超级”锂电池

  刚研发出来的超级锂电池能在短时间迅速充电完成,例如手机充电一般20秒,这种电池有可能加大电池未来的使用领域,例如使用在电动汽车上,使中途充电如加油一般方便。

编辑本段锂电池特点

  锂电池主要优点:

1.能量比较高。

具有高储存能量密度,目前已达到460-600Wh/kg,是铅酸电池的约6-7倍;  2.使用寿命长,使用寿命可达到6年以上,磷酸亚铁锂为正极的电池1C(100%DOD)充放电,有可以使用10,000次的记录;  3.额定电压高(单体工作电压为3.7V或3.2V),约等于3只镍镉或镍氢充电电池的串联电压,便于组成电池电源组;  4.具备高功率承受力,其中电动汽车用的磷酸亚铁锂锂离子电池可以达到15-30C充放电的能力,便于高强度的启动加速;  5.自放电率很低,这是该电池最突出的优越性之一,目前一般可做到1%/月以下,不到镍氢电池的1/20;  6.重量轻,相同体积下重量约为铅酸产品的1/5-6;  7.高低温适应性强,可以在-20℃--60℃的环境下使用,经过工艺上的处理,可以在-45℃环境下使用;  8.绿色环保,不论生产、使用和报废,都不含有、也不产生任何铅、汞、镉等有毒有害重金属元素和物质。

  9.生产基本不消耗水,对缺水的我国来说,十分有利。

  比能量指的是单位重量或单位体积的能量。

比能量用Wh/kg或Wh/L来表示。

Wh是能量的单位,W是瓦、h是小时;kg是千克(重量单位),L是升(体积单位)。

编辑本段锂电池的缺点

  1.锂原电池均存在安全性差,有发生爆炸的危险。

  2.钴酸锂的锂离子电池不能大电流放电,安全性较差。

  3.锂离子电池均需保护线路,防止电池被过充过放电。

  4.生产要求条件高,成本高。

编辑本段锂电池的特征

  A.高能量密度  锂离子电池的重量是相同容量的镍镉或镍氢电池的一半,体积是镍镉的20-30%,镍氢的35-50%。

  B.高电压  一个锂离子电池单体的工作电压为3.7V(平均值),相当于三个串联的镍镉或镍氢电池。

  C.无污染  锂离子电池不含有诸如镉、铅、汞之类的有害金属物质。

  D.不含金属锂  锂离子电池不含金属锂,因而不受飞机运输关于禁止在客机携带锂电池等规定的限制。

  E.循环寿命高  在正常条件下,锂离子电池的充放电周期可超过500次,磷酸亚铁锂(以下称磷铁)则可以达到2000次。

  F.无记忆效应  记忆效应是指镍镉电池在充放电循环过程中,电池的容量减少的现象。

锂离子电池不存在这种效应。

  G.快速充电  使用额定电压为4.2V的恒流恒压充电器,可以使锂离子电池在1.5--2.5个小时内就充满电;而新开发的磷铁锂电,已经可以在35分钟内充满电。

编辑本段锂电池的安全性设计

  为了

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2