SUV乘用车驱动桥设计解析.docx

上传人:b****6 文档编号:13701706 上传时间:2023-06-16 格式:DOCX 页数:31 大小:406.06KB
下载 相关 举报
SUV乘用车驱动桥设计解析.docx_第1页
第1页 / 共31页
SUV乘用车驱动桥设计解析.docx_第2页
第2页 / 共31页
SUV乘用车驱动桥设计解析.docx_第3页
第3页 / 共31页
SUV乘用车驱动桥设计解析.docx_第4页
第4页 / 共31页
SUV乘用车驱动桥设计解析.docx_第5页
第5页 / 共31页
SUV乘用车驱动桥设计解析.docx_第6页
第6页 / 共31页
SUV乘用车驱动桥设计解析.docx_第7页
第7页 / 共31页
SUV乘用车驱动桥设计解析.docx_第8页
第8页 / 共31页
SUV乘用车驱动桥设计解析.docx_第9页
第9页 / 共31页
SUV乘用车驱动桥设计解析.docx_第10页
第10页 / 共31页
SUV乘用车驱动桥设计解析.docx_第11页
第11页 / 共31页
SUV乘用车驱动桥设计解析.docx_第12页
第12页 / 共31页
SUV乘用车驱动桥设计解析.docx_第13页
第13页 / 共31页
SUV乘用车驱动桥设计解析.docx_第14页
第14页 / 共31页
SUV乘用车驱动桥设计解析.docx_第15页
第15页 / 共31页
SUV乘用车驱动桥设计解析.docx_第16页
第16页 / 共31页
SUV乘用车驱动桥设计解析.docx_第17页
第17页 / 共31页
SUV乘用车驱动桥设计解析.docx_第18页
第18页 / 共31页
SUV乘用车驱动桥设计解析.docx_第19页
第19页 / 共31页
SUV乘用车驱动桥设计解析.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

SUV乘用车驱动桥设计解析.docx

《SUV乘用车驱动桥设计解析.docx》由会员分享,可在线阅读,更多相关《SUV乘用车驱动桥设计解析.docx(31页珍藏版)》请在冰点文库上搜索。

SUV乘用车驱动桥设计解析.docx

SUV乘用车驱动桥设计解析

SUV乘用车驱动桥设计

TheDesignofDriveAxlefor

SUVPassengerCar

摘要

驱动桥的基本功用是将传动轴或变速器传来的转矩增大并适当降低转速后分配给左、右驱动车轮,其次驱动桥要承受路面和车架或车身之间的垂直力、纵向力和横向力,以及制动力和反作用力矩等。

转向驱动桥在驱动桥的基础上增添了转向的功能,使汽车按照驾驶员的要求行驶。

转向驱动桥的组成包括主减速器、差速器、半轴、等速万向节和驱动桥壳。

驱动桥是汽车传动系中主要总成之一。

驱动桥的设计是否合理直接关系到汽车使用性能的好坏,驱动桥是汽车中的重要部件,它承受着来自路面和悬架之间的一切力和力矩,是汽车中工作条件最恶劣的总成之一,如果设计不当会造成严重的后果。

本设计主要内容包括转向驱动桥各部件的设计、计算和校核,并且绘制了转向驱动桥的装配图,主减速器的从动齿轮、半轴齿轮和万向节等主要部件的零件图。

关键词:

驱动桥,主减速器,差速器,车轮传动装置,驱动桥壳

Abstract

ThebasicfunctionoftheDriveAxleisincreasingtorquewhichisfromdriveshaftortransmissionandreducingthespeed,thendriveittotheIeftandrightdrivingwheeI;secondIyDriveAxIestillwithstandtheverticalforce,longitudinaIforceandtransverseforcebetweentheroadandbridgeorthebodyframe,andbrakingforce,reactiontorque,etc.SteeringDriveAxIeaddsthefunctionofshiftunderthebasicoftheDriveAxIe,sothatthecarcanrunaccordingtothedriver.SteeringDriveAxIeincIudethemaindrivecomporient,Differential,HaIfAxeI,universaI,DriveAxIeHousing,etc.DriveAxIeisoneofthemainassembIeoftheautomotivepowertrain.WhetherthedesignoftheDriveAxleisreasonabIeornot,affecttheuseofthecars.DriveAxIeistheimportantpartofthecars,itwithstandstheaIIforceandtorquebetweentheroadandthesuspensionanditsworkingconditionistheworstincars・IfthedesignisnotrightitwiIIcauseseriousconsequences.

ThisarticIemainIyincludesthevariouspartsoftheSteeringDriveAxle,sdesign,computationandexamination,WhiletheuseofCADsoftwaretomapouttheSteeringDriveAxIeassembIydrawing,thedrivengearofthemaingearbox,gearhaIfshaft,outeraxle'spartsdiagram,andmaketheirdrawings.CADasacomputer-aideddesignofhigh~endsoftware,withitspowerfuIassembIymanagement,functionalSimulation,manufacturing,datamanagement,andiswidelyusedtomakepartsoftheassembIytomeettherequirements.

Keywords:

DriveAxIe,Maingear

box,DifferentiaI,HalfAxeI,DriveAxIeSheII

66

7

8

 

1.1前言

驱动桥位于传动系的末端,其基本功用是增扭矩、降转速,改变转矩的传递方向,即增大山传动轴或变速器传来的转矩,并将转矩合理地分配给左、右驱动车轮;其次,驱动桥还要承受作用于路面和车架或车身之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩等。

驱动桥一般III主减速器、差速器、车轮传动装置和桥壳等组成。

驱动桥的结构形式可以分为非断开式驱动桥和断开式驱动桥两大类。

当驱动车轮采用非独立悬架时,就应该选用非断开式驱动桥,称为非独立悬架驱动桥;当驱动车轮釆用独立悬架时,则应该选用断开式驱动桥,称为独立悬架驱动桥。

断开式驱动桥的簧下质量较小,乂与独立悬挂相配合,致使驱动车轮与地面的接触惜况及对各种地形的适应性比较好,独立悬架驱动桥的结构虽然较为复杂,但可以大大提高汽车在不平路面上的行驶平顺性,减小车轮和车桥上的动载荷及零件的损坏,提高其可鼎性及使用寿命。

因此这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。

1.1.1本课题要解决的主要问题和设计总体思路

a.本课题解决的主要问题:

设汁出适合本课题的驱动桥。

汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。

在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。

首先驱动桥的差速器用来解决左、右驱动车轮间的转矩分配问题和差速要求。

其次,需将经过变速器传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。

因此,要想使汽车转向驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。

b.本课题的设计总体思路:

断开式驱动桥的桥壳,要求有足够的强度和刚度,同时还要尽量的减轻其重量。

所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。

对SUV汽车而言,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。

驱动桥的噪声主要来自齿轮及其他传动机件。

提高它们的加工精度、装配精度,增强齿轮的支承刚度,是降低驱动桥工作噪声的有效措施。

驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。

1.1.2预期的成果

设计出SUV车型的转向驱动桥,包括主减速器、差速器、半轴、万向节和桥壳等部件。

使设计出的产品使用方便,材料使用最少,经济性能最高。

a.提高汽车的技术水平,使其使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少。

b.改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。

1.2国内外发展状况

LI前国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的汽车依赖进口,国产车桥与国际先进水平仍有一定差距。

国内车桥的差距主要体现在设计和研发能力上,H前有研发能力的车桥厂家还不多,一些厂家仅仅停留在组装阶段。

实验设备也有差距,比如工程车和牵引车在行驶过程中,齿轮啮合接触区的形状是不同的,国外先进的实验设备能够模拟这种状态,而我国现在还在摸索中。

在结构方面,单级驱动桥的使用比例越来越高;技术方面,轻量化、舒适性的要求将逐步提高。

总体而言,汽车在向节能、环保、舒适等方面发展,要求车桥趋向于轻量化、大扭矩、低噪声、宽速比、寿命长和低成本生产。

在新政策《汽车产业发展政策》中,我国要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;汽车生产企业要形成若干驰名的汽车、摩托车和零部件产品品牌;通过市场竞争形成儿家具有国际竞争力的大型汽车企业集团等等。

同时,在这个新的汽车产业政策描绘的蓝图中,还包含许多涉及产业素质提高和市场环境改善的综合U标,着实令人鼓舞。

然而,不可否认的是,国内汽车产业的现状距离产业政策的U标还有相当长的距离。

自1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。

但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。

多数企业家预讣,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。

1.3本设计的主要内容

本设计是为某车型设计合适的转向驱动桥(包括主减速器、差速器、半轴、万向节和驱动桥壳),按要求需要完成:

1.主减速器、差速器、驱动半轴、万向节和桥壳等部分的设计和选型;

2.主要参数设计和理论研究;

3.各组成部分的结构设计;

4.做出CAD工程图。

2转向驱动桥结构方案分析

2.1基本设计参数

汽车的主要设计参数包括尺寸参数,质量参数和汽车性能参数。

汽车的主要尺寸参数有外部轮廓尺寸,轴距,轮距,前悬,后悬,车头长度和车厢尺寸等。

汽车的质量参数包括整车整备质量,汽车总质量,载客量,轴荷分配等。

汽车性能参数主要有动力性参数,燃油经济性参数,通过性儿何参数,操作稳定性参数,制动性参数等。

所选车型以某车型相关数据为参考。

相关参数如下:

驱动形式:

前置前驱最高车速(km/h):

180

主要儿何尺寸与质量:

长/宽/高(mm):

4640x1825x1690轴距(mm):

2680

轮距(前/后)(mm):

1565/1565整备质量(kg):

1560

发动机参数:

发动机型式:

4G63S4M4气门/自然吸气/油缸内直喷

最大功率(kw):

98/5500最大扭矩(N•m):

186/4000

0-100km/h加速(s):

14.45变速器型式:

5挡手动

悬架(前/后):

麦弗逊式独立悬架/四连杆独立悬架

制动装置型式(前/后):

通风盘式/盘式

轮胎类型与规格:

225/65R17

2.2驱动桥的选型

驱动桥的结构形式与驱动车轮的悬架形式密切相关。

当车轮采用非独立悬架时,驱动桥型式应为非断开式。

当采用独立悬架时,为保证运动协调,驱动桥型式应为断开式。

(a)(b)(c)

图2-1驱动桥的总体布豊型式简图

(a)普通非断开式驱动桥(b)带有摆动半轴的非断开式驱动桥(c)断开式驱动桥

1-桥壳2—主减速器3—差速器4一半轴5—轮毂

普通非断开式驱动桥,如图2-2,由于其结构简单、造价低廉、工作可靠,最广泛地用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。

它的具体结构是桥壳是一根支承在左、右驱动车轮上的刚性空心梁,而齿轮及半轴等所有的传动机件都装在其中。

这时整个驱动桥、驱动车轮及部分传动轴均属簧下质量,使汽车的簧下质量较大,这是它的一个缺点。

采用单级主减速器代替双级主减速器可大大减小驱动桥质量。

采用钢板冲压-焊接的整体式桥壳及钢管扩制的整体式桥壳,均可显著地减轻驱动桥的质量。

2.2.2方案

(二):

断开式驱动桥

图2-3断开式驱动桥

1-主减速器2-传动轴3-弹性元件4-减震器5-车轮6-摆臂7-摆臂轴

断开式驱动桥(如图2-3)区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。

断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。

另外,它乂总是与独立悬架相匹配,故乂称为独立悬挂驱动桥。

这种桥的中段,主减速器及差速器等是悬置在车架横梁或车厢底板上,或与脊梁式车架相联。

主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。

两侧的驱动车轮山于釆用独立悬挂则可以彼此独立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管,作相应摆动。

所以断开式驱动桥也称为“带有摆动半轴的驱动桥”

由于断开式驱动桥工作可靠,平稳性好,查阅资料,参照国内相关汽车的设计,最后根据某车型动力布置形式(前置前驱)采用断开式驱动桥。

其结构如图2-4所

示:

图2-4驱动桥装配示意图

3主减速器设计

3」主减速器功用及设计要求

主减速器是汽车传动系中降低转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮或斜齿圆柱齿轮带动齿数多的锥齿轮或斜齿圆柱齿轮。

对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。

对发动机横置的汽车,其主减速器就釆用直齿轮传动而不必改变动力方向。

山于汽车在各种道路上行驶时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左、右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。

3.1.1主减速器结构方案分析

主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。

(1)斜齿圆柱齿轮传动

图3-1斜齿圆柱齿轮传动

山一转速F(2—切向力Fr:

—径向力Fae—轴向力

按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(乂可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。

在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。

为了尽可能抵消主动轴上轴承的轴向力,主减速器中基本不用直齿圆柱齿轮而釆用斜齿圆柱齿轮。

此外,斜齿圆柱齿轮还具有运转平稳、噪声小等优点,汽车上获得广泛应用。

哈弗H6为前置前驱,发动机横置,主减速器的齿轮选用斜齿圆柱齿轮形式(如图3-1示)。

斜齿圆柱齿轮传动的主、从动齿轮轴线相互平行,齿轮是逐渐从一端连续平稳地转向另一端。

它工作平稳、能承受较大的负荷。

为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。

(2)结构形式

为了满足不同的使用要求,主减速器的结构形式也是不同的。

按参加减速传动的齿轮副数LI分,有单级式主减速器和双级式主减速器、双速主减速器、双级减速配以轮边减速器等。

双级式主减速器应用于大传动比的中、重型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,则称轮边减速器。

单级式主减速器应用于轿车和一般轻、中型载货汽车。

单级主减速器由一对圆柱齿轮(或者一对圆锥齿轮)组成,具有结构简单、质量小、成本低、使用简单等优点。

经方案论证,本设计的主减速器结构釆用单级主减速器。

其传动比io—般小于等于7,满足乘用车(一般io=3〜4.5)的要求。

3.1.2主减速器主、从动斜齿圆柱齿轮的支承方案

主减速器中心必须保证主从动齿轮具有良好的啮合状况,才能使它们很好地工作。

齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相关。

(1)主动斜齿圆柱齿轮的支承

图3-2主动斜齿圆柱齿轮支承形式

主动斜齿圆柱齿轮的支承形式可分为悬臂式支承和跨置式支承两种。

查阅资料、文献,经方案论证,釆用悬臂式支承结构(如图3-2示)。

支承距离应大于2.5倍的悬臂长度,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于悬臂长度尺寸。

支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。

它结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中

本课题设计的主动斜齿圆柱齿轮的支承形式选择悬臂式支承。

(2)从动斜齿圆柱齿轮的支承

图3-3从动圆柱斜齿齿轮跨置式支撑形式

c、d—齿轮中心到左、右轴承的距离

从动斜齿圆柱齿轮釆用圆锥滚子轴承支承(如图3-3示)。

为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。

为了使从动斜齿圆柱齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动斜齿圆柱齿轮大端分度圆直径的70%。

为了使载荷能均匀分配在两轴承上,应使c等于或大于d。

3.2主减速器斜齿圆柱齿轮设计

3.2.1主减速比i。

的确定

主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。

io的选择应在汽车总体设计时和传动系的总传动比i一起山整车动力计•算来确定。

可利用在不同io下的功率平衡来研究io对汽车动力性的影响。

通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择io值,可使汽车获得最佳的动力性和燃料经济性。

对于SUV汽车而言,为了获得较大的足够的功率储备,通常按下式确定主减速比io的大小:

式中:

rr——车轮的滚动半径,m;ns,最大功率时的发动机转速,r/min:

%zx最高车速,km/h;

%—一变速器量高档传动比;iJh——分动器或加力器高档传动比;ilh——轮边减速器传动比。

查阅哈弗H6的相关资料,轮胎类型与规格:

225/65R17

其中:

225——轮胎名义断面宽度(mm);

65——轮胎名义高宽比(扁平率);

R一一子午线结构代号;

17——轮網名义直径(in);

查长度单位换算表得:

lin=25.4mm

因此,轮刪名义尺寸直径为

17in=25.4x17mm

所以车轮的自由半径为

r=225x65%+17x25.4/2=362.15mm=0.36215m

对汽车作静力学分析时,应该用静力学半径;而作动力学分析时,应该选用滚动半径。

但通常不计它们的差别统称为车轮半径r。

本设计中也认为二者数值相同,即:

/;=362.15〃"”

查资料得,

最大功率时发动机的转速为:

®=5500〃min;

汽车的最高速度为:

=1塔Okn"h;变速器最高档的传动比为:

口=1。

将数值代入公式(3-1)得:

=4.1718-5.2230,为方便计算取心=4.55。

3.2.2主减速器齿轮计算载荷的确定

(1)按发动机最大转矩和最低档传动比确定从动齿轮齿轮的计算转矩Tce

 

(2)按驱动轮打滑转矩确定从动齿轮的计算转矩T“

(3-3)

_GW®,

(3)按汽车日常行驶平均转矩确定从动齿轮的计算转矩Ter

(3-4)

Tenwc为发动机最大扭矩,取186Nm;n为驱动桥数,取1:

ii为变速器1档传动比,取3.835;〃为传动效率,取0.9;k为液力变矩器变距系数,取1;G2为满载状态下一个驱动桥上的静载荷;为汽车最大加速度时的负荷转移系数,取1.2;(p为轮胎与路面间的附着系数,取1;im为主减速器从动齿轮到车轮之间的传动比,取0.96:

弘为主减速器主动齿轮到车轮之间的传动效率,取1;R为日常汽车行驶的平均牵引力;i为分动器传动比,取1;

汽车总质量ma的计算:

rna=叫+65/?

+coi:

(3-5)

式中,m()为汽车整备质量,取1560kg;n为载客数,取5;a为行李系数,取10。

代入公式(3—1),ma=1560+65x5+10x5=1935kgQ

动载系数kd的计算:

经计算0.195#虽>16,所以go,则kd=lo

G2=magx55%=1935x9.8x55%=10429.65/Vo

将以上参数代入公式(3-2).(3—3)和(3—4)得:

Tce=2921.004Nm,Tcs=4721.372Nm,TCf=786.895Nmo

3.2.3主减速器斜齿圆柱齿轮的主要参数选择

(1)主、从动斜齿圆柱齿轮齿数ZI和Z2的选择及齿轮的材料选择

对于单级主减速器,首先根据主减速器传动比io的大小选择主、从动齿轮的齿数。

为了使磨合均匀,ZI和Z2之间应避免公约数;为了得到理想的齿面重叠系数,其齿数之和对于载货汽车来说应不小于40,对于轿车应不小于50o取z1=9,则Z2=9x4.55=40.95,取Z2=41。

驱动桥斜齿圆柱齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。

因此,传动系中的主减速器齿轮是个薄弱环节。

主减速器斜齿圆柱齿轮的材料应满足如下的要求:

1)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面高的硬度以保证有高的耐磨性。

2)齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。

3)锻造性能、切削加工性能以及热处理性能良好,热处理后变形小或变形规律易控制。

4)选择合金材料是,尽量少用含傑、辂的材料,而选用含猛、饥、硼、钛、钮、硅等元素的合金钢。

汽车主减速器斜齿圆柱齿轮与差速器锥齿轮LI前常用渗碳合金钢制造,主要有20CrMnTi>20MnVB.20MnTiB>22CrNiMo和16SiMn2WMoVo渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%〜1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性。

因此,这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。

山于钢本身有较低的含碳量,使锻造性能和切削加工性能较好。

其主要缺点是热处理费用较高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗碳层与芯部的含碳量相差过多,便会引起表面硬化层的剥落。

为改善新齿轮的磨合,防止其在使用初期出现早期的磨损、擦伤、胶合或咬死,斜齿圆柱齿轮在热处理以及精加工后,作厚度为0.005〜0.020mm的磷化处理或镀铜、镀锡处理。

对齿面进行应力喷丸处理,可提高25%的齿轮寿命。

对于滑动速度高的齿轮,可进行渗硫处理以提高耐磨性⑸。

选择齿轮材料:

主、从动齿轮均选用20CrMnTi钢,作渗碳淬火处理,硬度56〜62HRCo

弯曲疲劳极限应力b袪和接触疲劳极限应力€7〃min分别为430MP"、1500。

(2)斜齿轮的设计计算

由于齿轮转速比较高,故选用硬齿面。

先按齿轮弯曲疲劳强度设计,再校核齿面接触強度,设计步骤如下:

A、齿轮弯曲疲劳强度设计

3、小齿轮弯曲强度设计

1)计算载荷系数:

查机械设计手册选取使用系数kA=1.5;动载系数kv=l.l:

K=kAkvkFakFp=l.5x1.1x1.4x1.35=3.1185o

2)小齿轮的计算转矩:

T

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2