热力学公式总结.docx

上传人:b****2 文档编号:13968877 上传时间:2023-06-19 格式:DOCX 页数:21 大小:70.20KB
下载 相关 举报
热力学公式总结.docx_第1页
第1页 / 共21页
热力学公式总结.docx_第2页
第2页 / 共21页
热力学公式总结.docx_第3页
第3页 / 共21页
热力学公式总结.docx_第4页
第4页 / 共21页
热力学公式总结.docx_第5页
第5页 / 共21页
热力学公式总结.docx_第6页
第6页 / 共21页
热力学公式总结.docx_第7页
第7页 / 共21页
热力学公式总结.docx_第8页
第8页 / 共21页
热力学公式总结.docx_第9页
第9页 / 共21页
热力学公式总结.docx_第10页
第10页 / 共21页
热力学公式总结.docx_第11页
第11页 / 共21页
热力学公式总结.docx_第12页
第12页 / 共21页
热力学公式总结.docx_第13页
第13页 / 共21页
热力学公式总结.docx_第14页
第14页 / 共21页
热力学公式总结.docx_第15页
第15页 / 共21页
热力学公式总结.docx_第16页
第16页 / 共21页
热力学公式总结.docx_第17页
第17页 / 共21页
热力学公式总结.docx_第18页
第18页 / 共21页
热力学公式总结.docx_第19页
第19页 / 共21页
热力学公式总结.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

热力学公式总结.docx

《热力学公式总结.docx》由会员分享,可在线阅读,更多相关《热力学公式总结.docx(21页珍藏版)》请在冰点文库上搜索。

热力学公式总结.docx

热力学公式总结

第一章气体的pVT关系

主要公式及使用条件

1.理想气体状态方程式

pV=(m/M)RT=nRT

或pVm=p(V/n)=RT

式中p,V,T及n单位分别为Pa,m3,K及mol。

Vm=V/n称为气体的摩尔体

积,其单位为m3.mol-1。

R=8.314510Jmol-1-K-1,称为摩尔气体常数。

此式适用丁理想气体,近似地适用丁低压的真实气体。

2.气体混合物

(1)组成

摩尔分数yB(或xb)=nB/,nA

A

体积分数B=yBVm,ByAV"m,A

式中£nA为混合气体总的物质的量。

V*m,A表示在一定T,p下纯气体A的摩A

尔体积。

zyAV%A为在一定T,p下混合之前各纯组分体积的总和。

A

(2)摩尔质量

Mmix=YbMb=m/n=LMb/'nB

BBB

式中m=£mB为混合气体的总质量,n=£nB为混合气体总的物质的量。

上述各式适用丁任意的气体混合物。

(3)yB=nB/n=pb/p=V;/V

式中pB为气体B,在混合的T,V条件下,单独存在时所产生的压力,称为B的分压力。

Vb*为B气体在混合气体的T,p下,单独存在时所占的体积。

3.道尔顿定律

pB=yBp,p=%pb

B

上式适用丁任意气体。

对丁理想气体

Pb=AbRT/V

4.阿马加分体积定律

..*

Vb=nBRT/p

此式只适用丁理想气体。

第二章热力学第一定律

主要公式及使用条件

1.热力学第一定律的数学表示式

U=QW

或du=aQ+aw=aQ-a网v'w

规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中Pamb为

环境的压力,W'为非体积功。

上式适用丁封闭体系的一切过程。

2.焰的定义式

H=UpV

3.焰变

(1)H=U(pV)

式中以PV)为pV乘积的增量,只有在包压下A(PV)=P。

-V1)在数值上等丁体积功。

2

(2)H=1nCp,mdT

此式适用丁理想气体单纯pVT变化的一切过程,或真实气体的包压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4.热力学能(乂称内能)变

2

U=1nCv,mdT

此式适用丁理想气体单纯pVT变化的一切过程。

5.包容热和包压热

Qv=U(dV=0W='0

Qp=H(dp=0,W'=0)

6.热容的定义式

(1)定压热容和定容热容

Cp=aQp/dT=(州/钉)p

Cv=8Qv/dT=(印/可)V

(2)摩尔定压热容和摩尔定容热容

Cp,m=Cp/n=(:

Hm/:

T)p

Cv,m=Cv/n=(「Um/「T)v

上式分别适用丁无相变变化、无化学变化、非体积功为零的包压和包容过程

(3)质量定压热容(比定压热容)

Cp=Cp/m=Cp,m/M

式中m和M分别为物质的质量和摩尔质量。

(4)Cp,m-Cv,mR

此式只适用丁理想气体。

7.摩尔蒸发焰与温度的关系

T2

■':

vap

Hm(T2)

=.'vapHm(T1),

T':

vapCp,mdT

(半

vaHn^'T

)-Ca)p

式中"vapCp,m:

=Cp,m

(g)—Cp,m

(l),上式适用丁包压漆

娄发过程。

8.体积功

(1)定义式

「W—pambdv

或W-八pamdV

(2)W=-p(V1-V2)=-nR(T2-Ti)适用丁理想气体包压过程。

(3)W=-pam(V1-V2)适用丁包外压过程。

..V2

(4)W=-pdV=-nRTln(V2M)=nRTln(p2/p1)适用丁理想气体包温可

vi

逆过程。

(5)W=AU=nCv,m(T")〔适用丁Cv,m为常数的理想气体绝热过程。

9.理想气体可逆绝热过程方程

(T2/T1户(V2/Vi)R=1

(T2/T1户(p2/pi)4=1

r

(p2/p1)(V2/V1)=1

上式中,y=Cp,m/Cv,m称为热容比(以前称为绝热指数),适用丁Cv,m为常数,理想气体可逆绝热过程p,V,T的计算。

10.反应进度

-:

nB八B

上式适用丁反应开始时的反应进度为零的情况,AnB=nB-盹0,死,0为反应前B

的物质的量。

vb为B的反应计量系数,其量纲为一。

七的量纲为mol。

11.标准摩尔反应始

:

rHm=%、blfhm(B,:

)=-'、blcHm(B,:

式中AfHm(B,E)及AcHm(B,E)分别为相态为'的物质B的标准摩尔生成始和标

准摩尔燃烧水含。

上式适用丁■=1mol,在标准状态下的反应。

12.上rHm与温度的关系

.fl.fl「2.一

△rHm(T2)=ArHm0)+"A「Cp,mdT

式中gm=Z圣押),适用丁包压反应。

13.节流膨胀系数的定义式

J=(:

T/:

P)h

已二乂称为焦耳-汤姆逊系数。

第三章热力学第二定律

主要公式及使用条件

1.热机效率

*•.=-W/Qi=(QiQ2)/Qi=0-丁2"

式中Q1和Q2分别为工质在循环过程中从高温热源T1吸收的热量和向低温热源

T2放出的热。

W为在循环过程中热机中的工质对环境所作的功。

此式适用丁在

任意两个不同温度的热源之间一切可逆循环过程。

2.

卡诺定理的重要结论

任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小丁零

3.炳的定义

dS=0r/T

4.克劳修斯不等式

{=9Q/T,可逆

dS>8Q/T,不可逆

5.嫡判据

△SiS。

=ASsy才ASamg>0,不可逆

=0,可逆

式中iso,sys和amb分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过

程即自发过程。

可逆,即系统内部及系统与环境之间皆处丁平衡态。

在隔离系统中,一切自动进行的过程,都是向嫡增大的方向进行,这称之为嫡增原理。

此式只适用丁隔离系统。

6.环境的嫡变

Samb-Qamb/Tamb--Qsys/Tamb

7.嫡变计算的主要公式

虫T

2

•11-

sA-

 

对丁封闭系统,一切6W=0的可逆过程的AS计算式,皆可由上式导出

(D

△S=nCV,mln(T2/T1)+nRln(V2/V1)

S=nCp,mln(T2/TJnRln(p1/P2)

S=nCv,mln(P2/Pi)nCp,mlnW/VJ

上式只适用丁封闭系统、理想气体、Cv,m为常数,只有PVT变化的一切过程

(2)△St=nRn(V/衿)nRln(p/,p)

此式使用丁n一定、理想气体、包温过程或始末态温度相等的过程。

 

(3)

S=nC,mln(T/T)

 

此式使用丁n一定、Cp,m为常数、任意物质的包压过程或始末态压力相等

的过程。

8.相变过程的嫡变

A咯=△百/Taa

此式使用丁物质的量

n一定,在a和E两相平衡时衡T,p下的可逆相变化。

9.热力学第三定律

limSm(完美晶体)=0sm(完美晶体,0K)=o

 

上式中符号代表纯物质

上述两式只适用丁完美晶体。

 

10.标准摩反应嫡

rSm(T2^.:

rSm(T1r12(rCp,m/T)dT

反应进度为1mol时,任

上式中A「Cp,m=E*Cp,m(B),适用丁在标准状态下,

B

化学反应在任一温度下,标准摩尔反应嫡的计算。

11.玄姆霍兹函数的定义

A=U-TS

12.玄姆霍兹函数判据

△A「vJ=0,平衡

〔<0,自发

 

只有在包温包容,且不做非体积功的条件下,才可用

△A作为过程的判据。

 

13.吉布斯函数的定义

G=H-TS

14.

吉布斯函数判据

 

△G作为过程的判据

只有在包温包压,且不做非体积功的条件下,才可用

15.热力学基本方程式

dU=TdS-pdVdH=TdSVdp

dA=—SdT-pdVdG=-SdTVdp

热力学基本方程适用丁封闭的热力学平衡系统所进行的一切可逆过程。

说的

更详细些,它们不仅适用丁一定量的单相纯物质,或组成包定的多组分系统发生单纯p,MT变化的过程。

也可适用丁相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

16.克拉佩龙方程

dp/dT=.、;Hm/(「:

Vm)

此方程适用丁纯物质的a相和&相的两相平■衡。

17.克劳修斯-克拉佩龙方程

——2—

dln(p/[p])=(MpH/RT)dTln(p2/pj=(vapHm/R)(1/T-I/T2)

此式适用丁气-液(或气-固)两相平衡;气体可视为理想气体;Vm⑴与V:

(g^目

比可忽略不计,在「-J的温度范围内摩尔蒸发焰可视为常数。

对丁气-固平衡,上式AvapHm则应改为固体的摩尔升华焰。

第四章多组分系统热力学

主要公式及其适用条件

1.偏摩尔量:

定义:

X^—

(1)

nBT,p,nc

其中X为广延量,如V、U、S......

全微分式:

dx=(虽]dT+'号dp+£XBdnB

(2)

[百,p,nB3pA,nBB

总和:

X=nBXB

B

2.吉布斯-杜玄姆方程

在T、p一定条件下,ZnBdXB=。

,或ZXBdXB=0。

BB

此处,XB指B的摩尔分数,XB指B的偏摩尔量

3.偏摩尔量间的关系

广延热力学量问原有的关系,在它们取了偏摩尔量后,依然存在。

例:

H=U+PVnHb=Ub+PVb;A=U-TSnAb=Ub-TSB;

G=H-TSnGb=Hb-TSB;-

Gb

TPb

定乂(JB=Gb

nBT,p,nc

Tp,nB

 

dU=TdS-pdV+£曲dnB

B

dH=TdS+Vdp+£曲dnB

B

dA=-SdT-pdV+£曲dnB

B

dG=-SdT+Vdp+£曲dnB

B

Mb

^B>SV,nc

 

但按定义,只有

B.7,p,nC才是偏摩尔量,其余3个均不是偏摩尔量。

6.化学势判据

在dT=0,dp=0W=0的条件下,ZZMB(a)dnB(a)<0j

aBl=0,干衡J

其中,Z指有多相共存,阳(a)指a相内的B物质。

a

7.纯理想气体B在温度T、压力p时的化学势

*0p

Hpg)=m(g)+RTln(—o)

P

0

pg表示理想气体,*表示纯态,少(g)为气体的标准化学势。

真实气体标准态与

0

理想气体标准态均规定为纯理想气体状态,其压力为标准压力p=100kPa

8.理想气体混合物中任一组分B的化学势

阳(pg)=杉g)+RTln(黑)

p

其中,^=yBp总为b的分压。

9.纯真实气体B在压力为p时的化学势

*o—p*RT

Mg)=『(g^RTim-^+nVm(g)-&]dp

pop

*.•

其中,Vm(g)为纯真实气体的摩尔体积。

低压下,真实气体近似为理想气体,故积分项为零。

10.真实气体混合物中任一组分B的化学势

o__pBpRT

阳(g)=阳(g)+RTln(上)+1[VB(g)-一]dp

p0

其中,VB(g)为真实气体混合物中组分B在该温度及总压pB下的偏摩尔体积。

低压下,真实气体混合物近似为理想气体混合物,故积分项为零。

11.拉乌尔定律与亨利定律(对非电解质溶液)

*

拉乌尔定律:

pa=paxa

*......___.

其中,pA为纯溶剂A之饱和烝气压,pA为稀溶液中溶剂A的饱和烝气分压,xa为稀溶液中A的摩尔分数。

亨利定律:

pb=k"Xb=kb,BbB=kc*cb

kxB,kbB及kc,B为用不同

其中,pb为稀溶液中挥发性溶质在气相中的平衡分压,单位表示浓度时,不同的亨利常数。

12.理想液态混合物

定义:

其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物*PB=PBXb

其中,0VB<1,成任一组分。

13.理想液态混合物中任一组分B的化学势

*

加(l)=加(l)+RTln(XB)

*其中,血⑴为纯敝体B在温度T、压力p下的化学势。

、、00…

若纯液体B在温度T、压力P下标准化学势为所⑴,则有:

P厢(l)=直(l)+」Vm,B(l)dp出£(l)P0

其中,V:

B(l)为纯液态B在温度T下的摩尔体积。

14.理想液态混合物的混合性质

1AmiV=。

2AniH=0;

3AmixS=—(EnB)REXBln(XB);

BB

4AniG=-TAniS

15.理想稀溶液

1溶剂的化学势:

P0win少a(l^RTlxx(+DVA(P)d

■0P

.s。

—,一

当p与P相差不大时,取后一项可忽略。

2溶质B的化学势:

曲(溶质)=曲(g)=趴g)+RTln(坪)

P

kb,BbB

=曲(g)RTln(厂)P

=^(g)RTln(^^)RTIn(与)Pb

我们定义:

同理,有:

p

疆溶质)+wrt溶质)dp

po

ckp

趴g)+RTln(」XB)=(溶质)+[V既溶质)dp

pp0

p

圉(溶质)=扃(溶质)+RTln(-Bj+JV?

(溶质)dpb0po

p—

=m0,b(溶质)+RTln(坦)+JVB°(溶质)dp

co

p

p一

=£b(溶质)+RTln(xB)+WB°(溶质)dp

p0

0.

注:

(1)当p与p相差不大时,最后一项积分均可忽略

(2)溶质B的标准态为p0下B的浓度分别为bB=b0,CB=c",Xb=1...

时,B仍然遵循亨利定律时的假想状态。

此时,其化学势分别为&b(溶质)、

E,b(溶质)、pX,b(溶质)。

16.分配定律

在一定温度与压力下,当溶质B在两种共存的不互溶的液体也、6问达到平衡时,若B在a、6两相分子形式相同,且形成理想稀溶液,则B在两相中浓度之比为一常数,即分配系数。

K=蝉,Kcb(言)

17.稀溶液的依数性(公式不用记)

*

1溶剂蒸气压下降:

电=paXb

2凝固点降低:

(条件:

溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出)

 

ATf=k〃B

kf

R(Tf)2M

AusH

m,A

 

③沸点升高:

(条件:

溶质不挥发)

ATb

*2

.R(Tb)2Mkb

A

△vapHm,A

④渗透压:

nV=rBRT

18.逸度与逸度因子

气体B的逸度Pb,是在温度T、总压力P总下,满足关系式:

厢(g)=杉g)十RTin(垮)p

的物理量,它具有压力单位。

其计算式为:

"ex冷)』dp}

逸度因子(即逸度系数)为气体B的逸度与其分压力之比:

-Pb

B一

Pb

理想气体逸度因子包等丁1。

19.活度与活度因子

对真实液态混合物中溶剂:

**

曲(I)=曲(I)+RTInaB=曲(I)+RTInxBfB,且有:

limfB=1,其中aB为

组分B的活度,fB为组分B的活度因子。

若B挥发,而在与溶液平■衡的气相中B的分压为Pb,则有

ap

f=-B=—L,且

Bx*,

XBPbXb

aB隽

Pb

对温度T压力p下,真实溶液中溶质B的化学势,有:

用(溶质)=直(溶质)十RTIn([零)+JV歆(溶质)dpbp。

其中,YBf/冬为B的活度因子,且

 

lim%=1

、b0

BB

o

当p与p0相差不大时,曲(溶质)=房(溶质)+RTlnaB,对丁挥发性溶质,其在

气相中分压为:

Pb=TkbbB,则aB=企,冶=-^。

kbkbbB

第五章化学平衡

主要公式及其适用条件

1.化学反应亲和势的定义

A-rGm

A代表在包温、包压和w'=0的条件下反应的推动力,A>0反应能自动进行;A

=0处丁平衡态;A<。

反应不能自动进行。

2.摩尔反应吉布斯函数与反应进度的关系

(EG/Et\,p=£%%=A「Gm,B

式中的(缶/K\p表小在T,p及组成一定的条件下,反应系统的吉布斯函数随

反应进度的变化率,称为摩尔反应吉布斯函数变。

3.化学反应的等温方程

△rGm=A「Gm十RTlnJp

式中ArGm=,%y,称为标准摩尔反应吉布斯函数变;Jp=U(pb/p罕,B

称为反应的压力商,其单位为1。

此式适用理想气体或低压下真实气体,,在T,

p及组成一定,反应进度为1mol时的吉布斯函数变的计算。

4.标准平■衡常数的表达式

ke=n(pBVp项eqB

式中pb。

为参加化学反应任一组分B的平衡分压力,汩为B的化学计量数。

Ke量纲为一。

若已知平衡时参加反应的任一种物质的量nB,摩尔分数yB,系统的总压力p,也可采用下式计算K0:

K0=nnBB』p/(p宜nB产=nyBB《p/p0f站B

式中£nB为系统中气体的物质的量之和,ZVB为参加反应的气态物质化学计量

数的代数和。

此式只适用丁理想气体。

lnK;.Ki)MmgTi)RT2T1

 

ArHm=ArHm,积分式或不定积分式只适用丁ArHm为常数

的理想气体包压反应。

若ArHm是T的函数,应将其函数关系式代入微分式后再积分,即可得到lnK。

与T的函数关系式。

第六章相平衡

主要公式及其适用条件

1.吉布斯相律

F=C-P2

式中F为系统的自由度数(即独立变量数);P为系统中的相数;“殊示平■衡系统只受温度、压力两个因素影响。

要强调的是,C称为组分数,其定义为C=S

一R—R',S为系统中含有的化学物质数,称物种数;R为独立的平■衡化学反应数;R'为除任一相中£xb=〔(或%=1)。

同一种物质在各平衡相中的浓度受化学势相等限制以及R个独立化学反应的标准平衡常数K。

对浓度限制之外,其他的浓度(或分压)的独立限制条件数。

相律是表示平■衡系统中相数、组分数及自由度数间的关系。

供助这一关系

可以解决:

(a)计算一个多组分多平衡系统可以同时共存的最多相数,即F=0时,P值最大,系统的平衡相数达到最多;(b)计算一个多组分平衡系统自由度数最多为几,即是确定系统状态所需要的独立变量数;(c)分析一个多相平衡系统在特定条件下可能出现的状况。

应用相律时必须注意的问题:

(a)相律是根据热力学平衡条件推导而得的,

故只能处理真实的热力学平衡系统;(b)相律表达式中的“2是代表温度、压力两个影响因素,若除上述两因素外,还有磁场、电场或重力场对平■衡系统有影响时,则增加一个影响因素,“2的数值上相应要加上“1;若相平衡时两相压力不

等,则F=C-P+2式不能用,而需根据平衡系统中有多少个压力数值改写“2”这一项;(c)要正确应用相律必须正确判断平■衡系统的组分数C和相数P。

而C值正确与否乂取决与R与R的正确判断;(d)自由度数F只能取0以上的正值。

如果出现F<0,则说明系统处丁非平衡态。

2.杠杆规则

杠杆规则在相平■衡中是用来计算系统分成平■衡两相(或两部分)时,两相

(或两部分)的相对量,如图6-1所示,设在温度为T下,系统中共存的两相分别为a相与6相。

图6-1说明杠杆规则的示意图

图中M,a,6分别表示系统点与两相的相点;x(M,xB,xf分别代表整个系统,a相和6相的组成(以B的摩尔分数表示);n,n^与n'则分别为系统点,a相和6相的物质的量。

由质量衡算可得

aMM

n(xb-xb)=n(xb-xb)

Mxb

上式称为杠杆规则,它表示a,6两相之物质的量的相对大小。

如式中的组成由摩尔分数x?

xB1,x?

换成质量分数瞻,箱,时,则两相的量相应由物质的量n"与n'(或m"与m')。

由丁杠杆规则是根据物料守包而导出的,所以,无论两相平■衡与否,皆可用杠杆规则进行计算。

注意:

若系统由两相构成,则两相

组成一定分别处于系统总组成两侧

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2