干胶制备过程.docx

上传人:b****5 文档编号:14922686 上传时间:2023-06-28 格式:DOCX 页数:28 大小:546.04KB
下载 相关 举报
干胶制备过程.docx_第1页
第1页 / 共28页
干胶制备过程.docx_第2页
第2页 / 共28页
干胶制备过程.docx_第3页
第3页 / 共28页
干胶制备过程.docx_第4页
第4页 / 共28页
干胶制备过程.docx_第5页
第5页 / 共28页
干胶制备过程.docx_第6页
第6页 / 共28页
干胶制备过程.docx_第7页
第7页 / 共28页
干胶制备过程.docx_第8页
第8页 / 共28页
干胶制备过程.docx_第9页
第9页 / 共28页
干胶制备过程.docx_第10页
第10页 / 共28页
干胶制备过程.docx_第11页
第11页 / 共28页
干胶制备过程.docx_第12页
第12页 / 共28页
干胶制备过程.docx_第13页
第13页 / 共28页
干胶制备过程.docx_第14页
第14页 / 共28页
干胶制备过程.docx_第15页
第15页 / 共28页
干胶制备过程.docx_第16页
第16页 / 共28页
干胶制备过程.docx_第17页
第17页 / 共28页
干胶制备过程.docx_第18页
第18页 / 共28页
干胶制备过程.docx_第19页
第19页 / 共28页
干胶制备过程.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

干胶制备过程.docx

《干胶制备过程.docx》由会员分享,可在线阅读,更多相关《干胶制备过程.docx(28页珍藏版)》请在冰点文库上搜索。

干胶制备过程.docx

干胶制备过程

AerogelProcessing

INTRODUCTION

Agelresultsfromacondensationofmoleculesorparticlesinasolvent.Itisconstitutedbytenuousandentangledchainsofsolidwettedbyaliquidwhichoccupiesthewholevolumelocatedbetweensolidchains.Theliquidisamixtureofsolvent,unreactedmoleculesinducinggelationandby-productsofchemicalreactions.Itisobviousthatonlythenetworkisofinterestformaterialapplications.Therearemanywaystoremovetheliquidlocatedwithintheporesofthegel.Adriedgelisnamed“xerogel”(fromtheGreekworkχερροζthatmeansdried).

Dryingisoftenperformedbyagentlesolventevaporationattemperaturesclosetoroomtemperature.Inthecourseofsolventevaporation,theshapeoftheliquid–vaporinterfacechangeswithtime.Thecurvatureradiusofthemeniscusdecreases(Fig.25-1)and,associatedtothiscurvature,capillaryforcestakeplace.Thepressuredifference,∆P,betweenvaporandliquidisgivenbyLaplace’srelation:

(25-1)

whereγLVistheliquid–vaporsurfaceenergyandRisthecurvatureradiusofthemeniscus(hereassumedspherical).Theliquidisconsequentlyunderatensionstressandconverselythesolidnetworkissubmittedtoacompressionstress.Becauseoftheweakmechanicalpropertiesofthegelnetworkashrinkageoccurs.Theporevolumeofthexerogeliswelllowerthanthatofthestartinggel.

Hencepronouncedtexturalmodificationshappen.Thisisthefirstseriousdrawbackthatwemustavoidtopreservetheexpandedtextureofthesolidnetwork.

Thevolumeshrinkageofthegelduringdryinginducesanincreaseofitsstiffness.Atagiventime,thesolidnetworkisnomorecompliantandthemeniscusrecedesinthepores.Atthismoment,thestressismaximumsincethecurvatureradiuscorrespondstothatoftheshrunkpore(assumedcylindrical).Associatedtoevaporation,theliquidflowsfromthecoreofthegeltothesurface.Thisflowishinderedbythesolidarmsofthegel.Agelisbadlypermeablebecausethesizeoftheporesliesmainlywithintherange0.2–10nmindicatingthatagelisamesoporousmaterial.AccordingtotheDarcy’slaw,theliquidflow,J,isrelatedtopermeability,D,bytherelation:

(25-2)

where∇Pisthepressuregradientandηistheliquidviscosity.

Becauseofthestressgradient,thesolidnetworkmaycrack.Thiskineticapproachexplainswhycrackingisrelatedtotheevaporationrate.Indeedtheevaporationratecontrolstheliquidflow.ThedryingofthegelhasbeenverypreciselystudiedbyG.W.SchererinaseriesofpaperslistedinChapter8(Brinker,1990).Ageldriedveryslowlywillproduceafreecrackxerogel.Manyauthorsreportdryingtreatmentsthedurationofwhichisofseveralmonths.Thatisusuallydonebycoveringthegelswithaplasticfilminwhichmanyholesarepunctured.

Figure25-1.Evolutionofthecurvatureofliquid–vapormeniscusatthesurfaceofaporeasafunctionofdryingtime,t.

Crackingofthesolidpartofthegelistheseconddrawbackusuallyencounteredduringdrying.Freezedryingandsupercriticaldryingaretwoprocesseswhichhavebeeninvestigatedtocircumventthesedifficulties.

Freezedryingconsistsofloweringthetemperatureofliquidtoinduceacrystallizationphenomenon.Thesolventisthenremovedfromitsvaporstatebydecreasingthepressure(sublimation).Thisprocessapplieswelltosolventsshowinganappreciablevaporpressureattemperatureslowerthancrystallizationtemperature.Lowmolecularweightalcoholshaveverylowcrystallizationtemperatures(methanol:

–94°C,ethanol:

–117°C).Waterwhichtransformsintoicecrystalshowsanimportantvolumechangeassociatedtothistransformation.Thesolidpartofthegelishighlystressedandusuallybreaksintosmallpieces(Pajonk,1989).Moreoverthesublimationrateisquiteslow.Itisofabout140kg/m2hat15°C.Asolutionwhichmay,inimagination,avoidthelargevolumechangeproducedbycrystallization,istotransformliquidintoglass.Unfortunatelyglassformationdomainoftenoccursneareutecticpointcomposition.AsexemplifiedtheglasstemperatureofmixtureH2O-CH3OHistoolow(–157°C)(Vuillard,1961)toperformthensublimationatappreciablerate.Finally,oneamongthebestliquidsseemstobeterbutanolwhosethemeltingtemperatureis25°Candwhichhasasublimationrateof2800kg/m2hat0°C.Thissolventisnotusualandaprevioussolventexchangeisoftenrequired.Thetexturalpropertiesofthegelsuchastheporevolumeandtheporesizedistributionareapproximatelypreserved.Neverthelessitseemsdifficulttoobtainmonolithicsampleshavingsignificantthickness(higherthan10mm)(DegnEgeberg,1989).AdetailedanalysisofthenucleationandcrystallizationphenomenaoccurringintheliquidwettingthesolidpartofthegelhasbeendonebyScherer(Scherer,1993).Crystallizationstartsfromtheliquidlocatedattheexternalgelsurfaceandthecrystal–liquidinterfacemovesfromthesurfacetothecore.Thusstressesappearasaconsequenceofthesolidcrustwhichformsatthesurfaceandthevolumechangeassociatedtotheliquid–crystaltransformation.

Sincethemainconsequencesofdryingaretheshrinkageandthebreakage,severalexperimentshavebeenperformedtoovercomethesedrawbacks.Wemustunderlinethatcrackinghasbeenchemicallyavoidedbyaddingtothestartingsolutionsomecompoundswhichgiverisetogelhavinganarrowporesizedistribution(formamide,glycerol,oxalicacid).Chemicaladditivescontrollingthedryingstepworkwellbothwithaqueousgels(Shoup,1988)andthosepreparedfromorganometalliccompounds(Hench,1986).

Theincreaseofthestiffnessofthesolidpartofthegelbyadissolution-redepositioneffectallowstopreservethemonolithicityofthegelwhilereducingtheshrinkage(Mizuno,1988).Itisworthnoticingthatageingthewetgelinasolutioncontainingmonomersgivesanalogousresults(Einarsrud,1998).Analternativewaytoproducecrackfreesamplesistosynthesizegelshavingverysmallporesizes.Duringdrying,nucleationandgrowthofbubblesoccurwithintheliquid.Thiscavitationphenomenoninducesthesegmentationoftheliquidwhichbecomesunderalowertensilestress(Sarkar,1994).Ontheotherhandwemustunderlinethatsometimescrackingcanberegardedasanadvantage.Asanexample,anextensivecrackingisbeneficialinthesynthesisofabrasivepowdersissuedfromsol–gelprocess.

THESUPERCRITICALDRYING-PROCESS

ThesupercriticaldryingprocesshasbeenproposedbyKistler.(Kistler,1932)todry,withouttexturalmodification,verytenuoussolidswettedwithasolvent.

Themainideaistoavoidcapillaryforces,whichoccurduringdrying,byaverypeculiarpressureandtemperaturescheduleappliedtotheliquid.Regardingonlytheliquidphaseofthegel,itisobviousthatonecanmodifyitsstatebychangingthermodynamicparameterssuchasthepressureandthetemperature.

Figure25-2showsatypicalphasediagramforapurecompound.Theparameters,P,T,v(usuallythespecificvolume)arethevariableswhichdeterminethestateequation.

Figures25-3and25-4correspondtosomeprojectionsofthepreviousthree-dimensionaldiagram.

Figure25-2.TypicalP,T,vdiagramofachemicalcompound.

Figure25-3.Pressure-specificvolumediagramissuedfromdiagramFigure25-2.

Figure25-4.Pressure-temperaturediagramshowingthedifferentdomainssolid,liquidandvaporandsupercriticalfluid(SF).

TheprincipleofsupercriticaldryingiseasilyunderstoodowingtoFigure25-4.Thepoint,a,definesthecouplepressure-temperatureatwhichthethreestatesofthecompoundareinequilibrium.Underatmosphericpressure,Pat,theliquidtransformsintovaporatboilingtemperature(TB).Thepoint,c,istheboundaryofthevaporizationcurvecorrespondingtoliquid–vaporseparation.Thepoint,c,isnamedthecriticalpoint.Foragivencompoundthecriticalpointisdeterminedbyassociatedcriticalpressureandtemperaturevalues.Abovethispointthereisacontinuumbetweentheliquidandthevaporwhichcannomorebedistinguished.Inthisdomain,thereisanuniquestatenamedsupercriticalfluid(SF).Thisdomainisnotwelldefined.HoweveracrudeapproximateconsistsinlocatingthesupercriticalfluiddomainbyaP,TareaasindicatedinFigure25-4.

Atroomtemperature(TR)startingwithaliquid(N)andincreasingboththetemperatureandthepressure,thecompoundfollowsthepathN→Q(Fig.25-5).AtQ,thecompoundissupercriticalunderitsfluidstate.Itcanbeobservedthatstartingwiththevaporstateatlowpressure(M)andincreasingagainthetemperatureandthepressure,thecompoundreachesthepointQwhereitisinthesamestatethanthatpreviouslymentioned.Thuswehaveobtainedthesamehomogeneousanduniquestateusingdifferentpaths.Foragivencompound,itspropertiesdependobviouslyonthepressureandtemperaturevaluesandcanbeeasilyvariedaccordingly.

Figure25-5.Differentpathstoreachthesupercriticalfluiddomain.

Itisevidencedthatstartingfromtheliquidstate(pointN)andincreasingthetemperatureandpressureuptothesupercriticalfluidstate(pointQ),anadequatedecreaseinthetemperatureandpressure(seefullarrow)willleadtothevaporstate(pointM).Theneteffectofthesesuccessivestepsresultsinthetransformationofliquidintovapor.Adryingstephasbeencarriedout.Thechangefromtheliquidtothevaporfollowsapaththatavoidsthevaporizationcurve(ac).Duringheating,thesurfaceenergyassociatedtotheinterfaceliquid–gasprogressivelydecreasesandvanisheswhenthesuperfluidstateisattained.Consequentlycapillaryforces(seeequation

(1))arenomoreactingandthesolidpartoftheg

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2