单片机的温度控制系统设计文档格式.docx

上传人:b****2 文档编号:1494101 上传时间:2023-04-30 格式:DOCX 页数:18 大小:80.17KB
下载 相关 举报
单片机的温度控制系统设计文档格式.docx_第1页
第1页 / 共18页
单片机的温度控制系统设计文档格式.docx_第2页
第2页 / 共18页
单片机的温度控制系统设计文档格式.docx_第3页
第3页 / 共18页
单片机的温度控制系统设计文档格式.docx_第4页
第4页 / 共18页
单片机的温度控制系统设计文档格式.docx_第5页
第5页 / 共18页
单片机的温度控制系统设计文档格式.docx_第6页
第6页 / 共18页
单片机的温度控制系统设计文档格式.docx_第7页
第7页 / 共18页
单片机的温度控制系统设计文档格式.docx_第8页
第8页 / 共18页
单片机的温度控制系统设计文档格式.docx_第9页
第9页 / 共18页
单片机的温度控制系统设计文档格式.docx_第10页
第10页 / 共18页
单片机的温度控制系统设计文档格式.docx_第11页
第11页 / 共18页
单片机的温度控制系统设计文档格式.docx_第12页
第12页 / 共18页
单片机的温度控制系统设计文档格式.docx_第13页
第13页 / 共18页
单片机的温度控制系统设计文档格式.docx_第14页
第14页 / 共18页
单片机的温度控制系统设计文档格式.docx_第15页
第15页 / 共18页
单片机的温度控制系统设计文档格式.docx_第16页
第16页 / 共18页
单片机的温度控制系统设计文档格式.docx_第17页
第17页 / 共18页
单片机的温度控制系统设计文档格式.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

单片机的温度控制系统设计文档格式.docx

《单片机的温度控制系统设计文档格式.docx》由会员分享,可在线阅读,更多相关《单片机的温度控制系统设计文档格式.docx(18页珍藏版)》请在冰点文库上搜索。

单片机的温度控制系统设计文档格式.docx

本文设计的太阳能热水器控制系统以MCS-51单片机为检测控制中心单元,采用DSl2887实时时钟,不仅实现了时间、温度和水位三种参数实时显示功能,而且具有时间设定、温度设定与控制功能。

控制系统可以根据天气情况利用辅助加热装置(电加热器)使蓄水箱内的水温达到预先设定的温度,从而达到24小时供应热水的目的。

实际应用结果表明,该控制器和以往显示仪相比具有性价比高、温度控制与显示精度高、使用方便和性能稳定等优点,提高了我国太阳能应用领域控制水平,具有可观的经济效益和社会效益。

水温控制系统的基本要求的要求如下:

1.一升水由1kw的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

2.主要性能指标

a.温度设定范围:

30-90℃,最小区分度为1℃。

b.控制精度:

温度控制的静态误差≤1℃。

c.用十进制数码显示实际水温。

d.能打印实测水温值。

3.扩展功能

a.具有通信能力,可接受其他数据设备发来的命令,或将结果传送到其他数据设备。

b.采用适当的控制方法实现当设定温度与环境温度突变时,减小系统的调节时间和超调量。

c.温度控制的静态误差≤1℃。

d.能自动显示水温随时间变化的曲线。

2总体方案设计

2.1总体方案的确定

由于水温控制系统的控制对象具有热存储能力大,惯性也较大的特点。

水在容器内的流动或热量传递都存在一定的阻力,因而可以归于具有纯滞后的一阶大惯性环节。

一般来说,热过程大多具有较大的滞后,它对任何信号的响应都会推迟一段时间,使输出与输入之间产生相移。

对于这样一些存在大的滞后特性的过渡过程控制,一般来说可以采用以下几种控制方案:

(1)输出开关量控制:

对于惯性较大的过程可以简单地采用输出开关量控制的方法。

这种方法通过比较给定值与被控参数的偏差来控制输出的状态:

开关或者通断,因此控制过程十分简单,也容易实现。

但由于输出控制量只有两种状态,使被控参数在两个方向上变化的速率均为最大,因此容易硬气反馈回路产生振荡,对自动控制系统会产生十分不利的影响,甚至会因为输出开关的频繁动作而不能满足系统对控制精度的要求。

因此,这种控制方案一般在大惯性系统对控制精度和动态特性要求不高的情况下采用。

(2)比例控制(P控制)

比例控制的特点是控制器的输出与偏差成比例,输出量的大小与偏差之间有对应关系。

当负荷变化时,抗干扰能力强,过渡时间短,但过程终了存在余差。

因此它适用于控制通道滞后较小、负荷变化不大、允许被控量在一定范围内变化的系统。

使用时还应注意经过一段时间后需将累积误差消除。

a.比例积分控制(PI控制)

由于比例积分控制的特点是控制器的输出与偏差的积分成比例,积分的作用使得过渡过程结束时无余差,但系统的稳定性降低。

虽然加大比例度可以使稳定性提高,但又使过渡时间加长。

因此,PI控制适用于滞后较小、负荷变化不大、被控量不允许有余差的控制系统,它是工程上使用最多、应用最广的一种控制方法。

b.比例积分加微分控制(PID控制)

比例积分加微分控制的特点是微分的作用使控制器的输出与偏差变化的速度成正比例,它对克服对象的容量滞后有显著的效果。

在比例基础上加上微分作用,使稳定性提高,再加上积分作用,可以消除余差。

因此,PID控制适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。

结合本例题设计任务与要求,由于水温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。

但从以上对控制方法的分析来看,PID控制方法最适合本例采用。

另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。

因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

2.2.1单片机系统选择

8031芯片内部无ROM,需要外扩程序存储器,由此造成电路焊接的困难,况且使用8031还需要另外购买其他的芯片,如A/D转换及定时/计数器(PWM)等芯片,从而造成成本较高,性价比低。

CMOS八位微处理器。

AT89C2051与MCS-51系列的单片机在指令系统和引脚上完全兼容,而且能使系统具有许多MCS-51系列产品没有的功能,功能强、灵活性高而且价格低廉。

AT89S51可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低了系统成本。

只要程序长度小于4K,四个I/O口全部提供给拥护。

系统运行中需要存放的中间变量较少,可不必再扩充外部RAM。

2.2.2数据接口的选择

在串行通信时,要求通信双方都采用一个标准接口,是不同的设备可以方便地连接起来进行通信。

当前流行的接口有:

RS-232-C和RS-485。

RS-485总线,通信距离为几十米到上千米时,因此长距离要求时被广泛采用。

RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。

RS-485采用半双工工作方式,任何时候只能有一点处于发送状态,因此发送电路须由使能信号加以控制。

RS-485用于多点互连时非常方便,可以省掉许多信号线。

应用RS一485可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。

故本系统采用RS-485接口。

2.2.3键盘显示电路

本模块以AT89C2051单片机为核心,利用138译码器对显示器动态扫描及作为键盘的扫描线,采用此方法大大简化了硬件,充分的利用了单片机的资源,这也是本设计的巧妙所在。

可同过键盘来设置温度,并显示在数码管上,并通过串口发送出去,另外检测到温度通过串口接收进来,并显示在相应的数码管上键盘的扫描输入与显示器的扫描输出由单片机控制,但考虑到键盘与接口需要较多的I/O口线,如果直接由单片机控制,一方面必须扩充系统I/O口,另一方面,键盘与LED显示的扫描处理占用大量机时,增加软件编程负担。

为此在组成系统人机对话通道时采用了可编程的键盘。

显示接口芯片8051,由8051负责键盘扫描、消抖处理和显示输出工作。

根据认为的要求,8051键盘被设计为2*8行,扫描线有SL0~SL8经译码输出,接入键盘列线,查询RL0~RL1提供,采用键盘扫描法对16个按键进行读取状态。

使用行列式,把这16个按键分为8

2,采用74LS138对8行键盘轮流扫描,再通过P3.2和P3.7这2列读进来,从而判断按键是否按下。

电路如图3所示。

键盘的系统框图如下:

键盘显示图一

键盘显示图二

3.3系统温度控制

3.3.1前向通道:

以AT89C51单片机为控制核心,采集到温度,经放大,AD转换后送单片机处理,再通过串行口发送到显示模块因为考虑到PID运算时需要调用浮点数运算程序库,程序需要占用很大的存储空间,8051内部的能满足此要求,所以不需要扩展外部ROM,系统中运行中需要存放的中间变量只有给定温度和实测,PID运算中间结果及输出结果等十几个变量.因而8051片内的RAM能够满足要求,可不必再扩展。

4参数计算

系统调试包括硬件调试和软件调试。

按+键设定温度值加一;

按-键设定温度值减一;

按设温键,可任意设置温度,输入相应的数值,按确定键即可,按取消键则返回前一次设置的值;

按初始键则返回刚一开机的状态。

软件的调试府在仿真器提供的单步、断点、跟踪等功能的支持下对各子程序分别进行调试.将调试完的工程序连接起来再调试.逐步扩大调试范围。

4.1系统各模块设计及参数计算

4.1.1温度采集部分及转换部分

我们使用AD590来采集外界的温度。

AD590是美国模拟器件公司生产的单片集成两端感温电流源。

它的主要特性如下:

1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即:

mA/K式中:

—流过器件(AD590)的电流,单位为mA;

T—热力学温度,单位为K。

2、AD590的测温范围为-55℃~+150℃。

3、AD590的电源电压范围为4V~30V。

电源电压可在4V~6V范围变化,电流变化1mA,相当于温度变化1K。

AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。

4、输出电阻为710MW。

5、精度高。

AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±

0.3℃。

由于AD590采集的输出数据是模拟量—电流,而且很小,不易测量,所以我们要将电流量转换成电压量,这样有利于后面的放大及D/A转换。

我们改用一个固定电阻(9.1k或10k)和一个电位器(1K)串接的方法,这样可以通过调节电位器使得每路输出电压基本一致。

如以0℃为参考值则应使其电压输出为2.73V;

如以25℃为参考值,则应使其电压输出为2.98V.

4.1.2传感器输出信号放大电路部分

由于取得的电压量很小,我们选用LM324做为运放,以为其内部带有四个运放,可以使得运放部分在电路版上不占用太大的体积。

我们用了其内部的三个运放。

第一级运放我们做成射级跟随器的形式,起到阻抗匹配的作用。

第二级运放设计为反相比例求和电路,根据反相比例求和电路公式,我们设计了如下图的电路,U=-((10/10)*U1+10/(20+R)),其中U为第二级输出电压,R为50k的电位器。

可以通过调节电位器使得输出电压达到要求。

设0℃时,第二级的输出为2.73-2.73=0V,而25℃时,第二级的输出为2.73-2.98=-0.25V(反相)(零位调整)。

第三级运放设计为反相比例放大电路,我们设计为将第二级的输出电压放大5倍。

所以我们选用了10k和50k的电阻来实现。

4.1.3模数转换电路部分

这部分最初想用ADC0809的,但为了配合使用CD4051,我们最终选择了ADC0804。

ADC0804的规格及引脚图

·

8位CMOS逐次逼近型的A/D转换器

三态锁定输出

存取时间:

135μs;

分辨率:

8位;

转换时间:

100μs;

总误差:

±

1LSB;

工作温度:

ADC0804LCN——0℃~+70℃;

ADC0804LCD——-40℃~+85℃;

引脚图及说明如图所示:

/CS:

芯片选择信号。

/RD:

外部读取转换结果的控制脚输出信号。

/RD为高时,DB0~DB7处于高阻抗;

/RD为低时,数字数据才会输出。

/WR:

用来启动转换的控制输入,相当于ADC的转换开始(/CS=0时),当/WR由高变为低时,转换器被清除;

当/WR回到高时,转换正式开始。

CLKIN,CLKR:

时钟输入或接振荡元件(R,C),频率约限制在100kHz~1460kHz,如果使用RC电路则其振荡频率为1/(1.1RC).

/INTR:

中断请求信号输出,低电平动作。

VIN(+)、VIN(-):

差动模拟电压输入。

输入单端正电压时,VIN(-)接地;

而差动输入时,直接加入VIN(+)、VIN(-)。

AGND,DGND:

模拟信号及数字信号的接地。

VREF:

辅助参考电压。

DB0~DB7:

8位的数字输出。

VCC:

电源供应以及作为电路的参考电压。

众所周知,精度是数据采集系统的重要指标,模数转换器的量化误差是影响系统精度的主要因素,A/D转换器的位数越多,其量化误差越小,一个M位的A/D转换器的量化误差可表示为:

式中Vref为模数转换器的参考基准电压。

设A/D转换电路的模拟输入电压为Vi,则经A/D转换后的相对误差表示为:

(2)上式表明,当模数转换器的位数选定后,其相对误差D与其模拟输入电压Vi成反比。

因此只有将输入信号Vi预放大到接近参考电压Vref,才能充分发挥A/D

转换器位数的效能,减小量化误差,提高系统数据采集精度。

此即为引入前置放大器的目的之所在。

逐步逼近式A/D的转换公式:

、Ux为输入电压、N为输出值(1-1)

(1-2)

当选定参考电压和A/D位数时,e为常数,由误差传递公式得:

,Ux是输入绝对误差(1-3)

由式(1-3)知:

当输入电压越大,A/D转换的相对误差越小,当然输入电压不能大于A/D最大转换电压。

因此为了减少A/D转换误差,对输入信号进行放大。

4.1.5数值处理部分及显示部分

数值处理部分:

我们采用8051芯片,其内部自带程序存储器。

其外接12兆的晶振来给起供应震荡频率。

9脚接一个10μF的电解电容再接地,来实现复位功能。

/RD和/WR分别与ADC0804的/RD和/WR相连,实现数据的读写控制。

P2.4脚与ADC0804的/INTR相接,可以通过编程来判断该脚的高低来得知A/D转换是否完成。

P1.4~P1.7及P2.7口分别外接一个4.7k的电阻接至三极管的C端,来控制三极管的通断,来控制5个数码管的亮暗。

P2.0~P2.2口分别与ADC0804的9、10、11脚来控制选择的路数。

显示部分:

用7447芯片与8051的P1.0~P1.3口相连,7447芯片可将8051转换好的8421BCD码转换成7段码送到数码管显示。

数码管选用共阳的,因此在其Vcc端要外接一个三极管(9013),通过控制三极管给数码管供电,来控制数码管的通断。

4.1.6PID算法的介绍

在模拟系统中,PID算法的表达式:

(1)式中:

P(t)——调节器的输出信号:

e(t)——调节器的偏差信号,它等于测量值与给定值之差;

KP——调节器的比例系数;

 TI——调节器的积分时间;

TD——调节器的微分时间。

4.1.7A/D转换模块

由于系统对信号采集的速度要求不高,故可以采用价格低的8位逐次逼近式A/D转换器ADC0804,该转换器转换速度为100us,转换精度为0.39%,对应误差为0.2340C。

故采用AD0804,ADC0804是8位模数转化电路,它能把模拟电压值转化为8位二进制码,其转化公式如下:

DX=VIN*256/VREF我们这里设置VREF等于5V(因为这里悬空没接,查资料可知其为5V),则DX所对应的值就是八位二进制码的十进制值,具体转化表如下:

温度值

ADCin(V)

DX

十六进制编码

0C

00H

30C

2.344

8

78H

2C

0.156

1

07H

35C

2.734

9

8BH

4C

0.313

2

0AH

40C

3.125

A

A0H

8C

0.625

3

20H

45C

3.516

B

B4H

10C

0.781

4

27H

50C

3.906

C

C7H

15C

1.172

5

3CH

55C

4.297

D

DCH

20C

1.560

6

4FH

60C

4.688

E

F0H

25C

1.953

7

63H

64C

5.000

F

FFH

A/D转换器时钟电路参数计算ADC0804片内有时钟电路,其振荡频率可按下式计算:

fclk≈1/1.1RC

式中R和C分别是CLK_R和CLK_IN两端外接一对地电阻、电容的阻容值。

其典型应用参数为R=10KΩ,C=150PF。

此时fclk≈640kHz,A/D转换时间约为103≈μs。

A/D转换器的INTR与89C51的P1.0相连,单片机以查询方式获取A/D转换器转换完毕的信息。

4.1.8、控制模块

由于用单片机来控制双向晶闸管,而晶闸管阳极和阴极间所接的是220V的交流电压,故本电路在中间加了一个光电耦合器件,使低压区和高压区隔离开。

光电耦合器件采用的是MOC3041,其耐压值为400V,可以满足本设计的要求。

而光电耦合器件的工作电流较大,因此前面需加放大电路,采用的是小功率硅三极管9012可满足要求,另外为了保护光电耦合器件需在高压侧接一个大功率电阻。

双向晶闸管的选取:

由于负载是1KW的电炉,用于控制负载输入功率的双向晶闸管应能满足负载对工作电压、电流的要求。

工作电压峰值可按下式计算:

Vp=220Χ1.414=313(V)

工作电流峰值可按下式计算:

Ip=1000/220Χ1.414=6.43(A)

因此,为满足应用要求并适当留有余地,双向晶闸管可选用BAT12-600,该器件可承受的最大反向电压为600V,最大电流为12A,为了保护双向晶闸管还可在其旁边加一保护电路(即缓冲电路),因为双向晶闸管在开通和关断的瞬间du/dt的变化率较大,开关损耗很大,因此加上阻容电路,利用储能元件对能量进行缓冲,从而达到保护的目的,具体电路如图2所示。

由于本电路采用PID控制,程序较长,约为2.8K左右,因此选用比较熟悉AT89C51单片机,其容量为4K,可以满足设计的要求。

复位电路的参数选择:

本设计晶振用的是12M,则机器周期为1us,要使单片机复位需持续2个机器周期的高电平。

可按下式计算:

RC≧2us

为了使单片机能够可靠地上电自动复位,选取R=8.2KΩ,C=10uF。

5.1单片机基本系统调试

(a)晶振电路

将仿真器晶扳开关打到外部,如果仿真器出现死机现象,说明用户系统晶振电路有问题,此时应用示波器观察单片机时钟信号,或输入端是否振荡信或检查品振电路各器件参数。

(b)复位电路

按下复位按钮应使系统处于复位状态,否则用用表检查复位电路各点信号和器件参数。

(2)LED显示电路

本电路采用8个共阴的数码管动态显示,前4个为设定温度,后4个为实测温度。

动态扫描时采用74LS138对这8个数码管轮流扫描,进行位控,而P1口是进行段控信号的控制,为了增加数码管的亮度,共阴端有三极管来驱动它的电流。

电路如图6所示。

(3)键盘接口电路

本电路采用键盘扫描法对16个按键进行读取状态。

2,采用74LS138对8行键盘轮流扫描,再通过P3.2和P3.7这2列读进来,从而判断按键是否按下

5.2软件调试

调试的过程一般是:

a测试程序输入条件或设定程序输入条件;

b以单步、断点或跟踪方式运行程序;

c检查程序运行结果;

d运行结果不正确时查找原因。

修改程序,重复上述过程。

(7)注意:

A.输入抗干扰

a、键盘

按键在按下与抬起时都会有10~20ms的抖动毛刺出现,在读取键值时可先延时,再进行采样,在本设计中我是调用了一段显示子程序,和同学的电路相比,效果非常明显。

b.AD转换器

由于外界的干扰,AD采样后的数据会有较大误差,为了提高准确度,可采用输入分区抗干扰法,对模拟信号进行初步的处理,降低外界干扰的破坏性,当然再配合多数平均法处理效果更加。

B.输出抗干扰

一般来说,单片机的低电平驱动能力远高于高电平的驱动能力,可以用上拉电阻的方法来平衡单片机的端口驱动能力,以提高整体的抗干扰能力。

因此本设计中只要涉及输出控制都是采用低电平驱动。

6CPU软件抗干扰

6.1看门狗设计

单片机最易受干扰的是内部计数器PC的值。

在受强干扰的时,PC值改变,改变后的值又是随机的,为一不确定值。

因此,对系统内核CPU进行R软件抗干扰显得尤为重要,本设计采用的是看门狗设计。

这样,就可以进行总体调试了。

把编写好的程序放在电脑里,使用伟福仿真器来仿真,看看8个数码管显示的数据是否正确,按下按键后能否在数码管上显示设定的值,反复的调试、修改程序,使达到预期的效果。

看门狗(Watchdog)电路是嵌入式系统需要的抗干扰措施之一。

本文用X25045芯片设计了一种新的看门狗电路,具有体积小、占用I/O口线少和编程方便的特点,可广泛应用于仪器仪表和各种工控系统中。

系统在运行时,通常都会遇到各种各样的现场干扰,抗干扰能力是衡量工控系统性能的一个重要指标。

看门狗(Watchdog)电路是自行监测系统运行的重要保证,几乎所有的工控系统都包含看门狗电路。

在8096系列单片机和增强型8051系列单片机中,该系统已经做在芯片内部,用户只要用软件开放它就可以,使用很方便。

但目前工控系统仍在使用廉价的普通型8051系列单片机,则看门狗电路必须由用户自己建立。

看门狗电路一般有软件看门狗和硬件看门狗两种。

软件看门狗不需外接硬件电路,但系统需要出让一个定时器资源,这在许多系统中很难办到,而且若系统软件运行不正常,可能导致看门狗系统也瘫痪。

硬件看门狗是真正意义上的“程序运行监视器”,如计数型的看门狗电路通常由555多谐振荡器、计数器以及一些电阻、电容等组成,分立元件组成的系统电路较为复杂,运行不够可靠。

X25045看门狗电路设计及编程

X25045硬件连接图如图2所示。

X25045芯片内包含有一个看门狗定时器,可通过软件预置系统的监控时间。

在看门狗定时器预置的时间内若没有总线活动,则X25045将从RESET输出一个高电平信号,经过微分电路C2、R3输出一个正脉冲,使CPU复位。

图2电路中,CPU的复位信号共有3个:

上电复位(C1、R2),人工复位(S、R1、R2)和Watchdog复位(C2、R3),通过或门综合后加到RESET端。

C2、R3的时间常数不必太大,有数百微秒即可,因为这时CPU的振荡器已经在工作。

图5-2X25045看门狗电路硬件连接图

看门狗定时器的预置时间是通过X25045的状态寄存器的相应位来设定的。

如表2所示,X25045状态寄存器共有6位有含义,其中WD1、WD0和看门狗电路有关,其余位和EEPROM的工作设置有关。

7测试方法和测试结果

7.1系统测试仪器及设备

双路跟踪稳压稳流电源DH1718E-5

直流稳压电源

数字示波器TektronixTDS1002

伟福E6000/L仿真器

多功能数字表GDM-8145

数字万用表

0~100℃温度计、调温电热杯、秒表

7.2测试方法

由于系统不完善,我采用的是分步调试的方

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2