高中生物必修二知识点.docx

上传人:b****1 文档编号:15020633 上传时间:2023-06-29 格式:DOCX 页数:27 大小:315.36KB
下载 相关 举报
高中生物必修二知识点.docx_第1页
第1页 / 共27页
高中生物必修二知识点.docx_第2页
第2页 / 共27页
高中生物必修二知识点.docx_第3页
第3页 / 共27页
高中生物必修二知识点.docx_第4页
第4页 / 共27页
高中生物必修二知识点.docx_第5页
第5页 / 共27页
高中生物必修二知识点.docx_第6页
第6页 / 共27页
高中生物必修二知识点.docx_第7页
第7页 / 共27页
高中生物必修二知识点.docx_第8页
第8页 / 共27页
高中生物必修二知识点.docx_第9页
第9页 / 共27页
高中生物必修二知识点.docx_第10页
第10页 / 共27页
高中生物必修二知识点.docx_第11页
第11页 / 共27页
高中生物必修二知识点.docx_第12页
第12页 / 共27页
高中生物必修二知识点.docx_第13页
第13页 / 共27页
高中生物必修二知识点.docx_第14页
第14页 / 共27页
高中生物必修二知识点.docx_第15页
第15页 / 共27页
高中生物必修二知识点.docx_第16页
第16页 / 共27页
高中生物必修二知识点.docx_第17页
第17页 / 共27页
高中生物必修二知识点.docx_第18页
第18页 / 共27页
高中生物必修二知识点.docx_第19页
第19页 / 共27页
高中生物必修二知识点.docx_第20页
第20页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高中生物必修二知识点.docx

《高中生物必修二知识点.docx》由会员分享,可在线阅读,更多相关《高中生物必修二知识点.docx(27页珍藏版)》请在冰点文库上搜索。

高中生物必修二知识点.docx

高中生物必修二知识点

第一章遗传因子的发现

第1节孟德尔的豌豆杂交实验

(一)

一、相对性状

性状:

生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:

同一种生物的同一种性状的不同表现类型。

二、孟德尔一对相对性状的杂交实验

1.孟德尔遗传实验运用了现代科学研究中常用的假说-演绎法,其一般过程是观察实验,→发现问题、分析问题,→提出假说(假设)、设计实验,→检验假说(假设)、归纳综合,→得出结论。

2.孟德尔遗传实验获得成功的原因是

(1)正确地选用实验材料。

豌豆自花授粉,闭花受粉,自然状态下是纯种;品种多,差异大相对性状明显,易于区分。

(2)由单基因到多基因地研究方法。

(3)应用统计学方法对实验结果进行分析。

(4)科学地设计实验程序。

3.相关概念

(1)、显性性状与隐性性状

显性性状:

具有相对性状的两个亲本杂交,F1表现出来的性状。

隐性性状:

具有相对性状的两个亲本杂交,F1没有表现出来的性状。

附:

性状分离:

在杂种后代中出现不同于亲本性状的现象)

(2)、显性基因与隐性基因

显性基因:

控制显性性状的基因。

隐性基因:

控制隐性性状的基因。

附:

基因:

控制性状的遗传因子(DNA分子上有遗传效应的片段P67)

等位基因:

决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。

(3)、纯合子与杂合子

纯合子:

由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):

显性纯合子(如AA的个体)

隐性纯合子(如aa的个体)

杂合子:

由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)

(4)、表现型与基因型

表现型:

指生物个体实际表现出来的性状。

基因型:

与表现型有关的基因组成。

(关系:

基因型+环境→表现型)

(5)杂交与自交

杂交:

基因型不同的生物体间相互交配的过程。

自交:

基因型相同的生物体间相互交配的过程。

(指植物体中自花传粉和雌雄异花植物的同株受粉)

附:

测交:

让F1与隐性纯合子杂交。

(可用来测定F1的基因型,属于杂交)

三、基因分离定律的实质:

在减I分裂后期,等位基因随着同源染色体的分开而分离。

四、基因分离定律的两种基本题型:

正推类型:

(亲代→子代)

亲代基因型

子代基因型及比例

子代表现型及比例

AA×AA

AA

全显

AA×Aa

AA:

Aa=1:

1

全显

AA×aa

Aa

全显

Aa×Aa

AA:

Aa:

aa=1:

2:

1

显:

隐=3:

1

Aa×aa

Aa:

aa=1:

1

显:

隐=1:

1

aa×aa

aa

全隐

逆推类型:

(子代→亲代)

亲代基因型

子代表现型及比例

至少有一方是AA

全显

aa×aa

全隐

Aa×aa

显:

隐=1:

1

Aa×Aa

显:

隐=3:

1

六、基因分离定律的应用:

1、指导杂交育种:

原理:

杂合子(Aa)连续自交n次后各基因型比例

杂合子(Aa):

(1/2)n纯合子(AA+aa):

1-(1/2)n

显性纯合子(AA)=隐形纯合子(aa):

1/2-(1/2)n+1

例:

小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TT×tt,则:

(1)子一代(F1)的基因型是____,表现型是_______。

(2)子二代(F2)的表现型是__________________,这种现象称为__________。

(3)F2代中抗锈病的小麦的基因型是_________。

其中基因型为______的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?

_____________________________________________________________________________

答案:

(1)Tt抗锈病

(2)抗锈病和不抗锈病性状分离(3)TT或TtTt

从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。

2、指导医学实践:

例1:

人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。

如果一个患者的双亲表现型都正常,则这对夫妇的基因型是___________,他们再生小孩发病的概率是______。

答案:

Aa、Aa1/4

例2:

人类的多指是由显性基因D控制的一种畸形。

如果双亲的一方是多指,其基因型可能为___________,这对夫妇后代患病概率是______________。

答案:

DD或Dd100%或1/2

第2节孟德尔的豌豆杂交实验

(二)

一、基因自由组合定律的实质:

在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。

(注意:

非等位基因要位于非同源染色体上才满足自由组合定律)

二、自由组合定律两种基本题型:

共同思路:

“先分开、再组合”

正推类型(亲代→子代)

逆推类型(子代→亲代)

三、基因自由组合定律的应用

1、指导杂交育种:

例:

在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。

现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?

_____________________________________________________________________________

附:

杂交育种方法:

杂交

原理:

基因重组优缺点:

方法简便,但要较长年限选择才可获得。

2、导医学实践:

例:

在一个家庭中,父亲是多指患者(由显性致病基因D控制),母亲表现型正常。

他们婚后却生了一个手指正常但患先天性聋哑的孩子(先天性聋哑是由隐性致病基因p控制),问:

①该孩子的基因型为___________,父亲的基因型为_____________,母亲的基因型为____________。

②如果他们再生一个小孩,则只患多指的占________,只患先天性聋哑的占_________,

既患多指又患先天性聋哑的占___________,完全正常的占_________

答案:

①ddppDdPpddPp②3/8,1/8,1/8,3/8

第2章基因和染色体的关系

第1节减数分裂和受精作用

一、减数分裂的概念

减数分裂是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。

在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

(注:

体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。

二、减数分裂的过程

1、精子的形成过程:

精巢(哺乳动物称睾丸)

减数第一次分裂

间期:

染色体复制(包括DNA复制和蛋白质的合成)。

前期:

同源染色体两两配对(称联会),形成四分体。

四分体中的非姐妹染色单体之间常常发生对等片段的互换。

中期:

同源染色体成对排列在赤道板上(两侧)。

后期:

同源染色体分离;非同源染色体自由组合。

末期:

细胞质分裂,形成2个子细胞。

减数第二次分裂(无同源染色体)

前期:

染色体排列散乱。

中期:

每条染色体的着丝粒都排列在细胞中央的赤道板上。

后期:

姐妹染色单体分开,成为两条子染色体。

并分别移向细胞两极。

末期:

细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。

2、卵细胞的形成过程:

卵巢

三、精子与卵细胞的形成过程的比较

精子的形成

卵细胞的形成

形成部位

精巢(哺乳动物称睾丸)

卵巢

过程

有变形期

无变形期

子细胞数

一个精原细胞形成4个精子

一个卵原细胞形成1个卵细胞+3个极体

相同点

精子和卵细胞中染色体数目都是体细胞的一半

四、注意:

(1)同源染色体①形态、大小基本相同;②一条来自父方,一条来自母方。

(2)精原细胞和卵原细胞

的染色体数目与体细胞相同。

因此,它们属于体细胞,通过有丝分裂

的方式增殖,但它们又可以进行减数分裂形成生殖细胞。

(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。

所以减数第二次分裂过程中无同源染色体。

(4)减数分裂过程中染色体和DNA的变化规律

(5)减数分裂形成子细胞种类:

假设某生物的体细胞中含n对同源染色体,则:

它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);

它的1个精原细胞进行减数分裂形成2种精子。

它的1个卵原细胞进行减数分裂形成1种卵细胞。

五、受精作用的特点和意义

特点:

受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。

精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。

意义:

减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。

六、减数分裂与有丝分裂图像辨析步骤:

一看染色体数目:

奇数为减Ⅱ(姐妹分家只看一极)

二看有无同源染色体:

没有为减Ⅱ(姐妹分家只看一极)

三看同源染色体行为:

确定有丝或减Ⅰ

注意:

若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。

同源染色体分家—减Ⅰ后期

姐妹分家—减Ⅱ后期

例:

判断下列细胞正在进行什么分裂,处在什么时期?

答案:

1.减Ⅱ前期2.减Ⅰ前期3.减Ⅱ前期4.减Ⅱ末期

5.有丝后期6.减Ⅱ后期7.减Ⅱ后期8.减Ⅰ后期

答案:

9.有丝前期10.减Ⅱ中期11.减Ⅰ后期12.减Ⅱ中期

11.减Ⅰ前期12.减Ⅱ后期13.减Ⅰ中期14.有丝中期

七、有性生殖

1.有性生殖是由亲代产生有性生殖细胞或配子,经过两性生殖细胞(如精子和卵细胞)的结合,成为合子(如受精卵)。

再由合子发育成新个体的生殖方式。

2.脊椎动物的个体发育包括胚胎发育和胚后发育两个阶段。

3.在有性生殖中,由于两性生殖细胞分别来自不同的亲本,因此,由合子发育成的后代就具备了双亲的遗传特性,具有更强的生活能力和变异性,这对于生物的生存和进化具有重要意义

第2节基因在染色体上

(1)、一个染色体上有多个基因,基因在染色体上呈线性排列。

基因和染色体行为存在着明显的平行关系。

(2)、基因的分离定律的实质是:

在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子传给后代。

基因的自由组合定律的实质是:

位于非同源染色体上的非等位基因的分离或组合互不干扰的,在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

第3节伴性遗传

1、XY型性别决定方式:

染色体组成(n对):

雄性:

n-1对常染色体+XY雌性:

n-1对常染色体+XX

性比:

一般1:

1

常见生物:

全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。

生物体细胞中的染色体可以分为两类:

性染色体和常染色体,生物的性别通常就是由性染色体决定的。

生物的种类不同,性别决定的方式也不相同。

生物的性别决定方式主要有两种:

①XY型:

雌性的性染色体是XX,雄性的性染色体是XY。

生物界中绝大多数生物的性别决定属于XY型。

雄性(男性)个体的精原细胞在经过减数分裂形成精子时,可以同时产生含有X染色体和Y染色体的精子,并且这两种精子的数目是相同的,而雌性(女性)个体的卵原细胞在经过减数分裂形成卵细胞时,只能够产生1种含有X染色体的卵细胞。

受精时,由于两种精子和卵细胞结合的机会相等,因此,在XY型性别决定的生物所产生的后代中,雌性(女性)个体和雄性(男性)个体的数量比为1:

1。

②ZW型:

该性别决定的生物,雌性的性染色体是ZW,雄性的是ZZ。

蛾类、鸟类的性别决定属于ZW型。

2、三种伴性遗传的特点:

性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫伴性遗传。

以人的红绿色盲为例:

人类红绿色盲的致病基因是位于X染色体上隐性基因,遗传特点是:

(1)隔代交叉遗传:

男性红绿色盲基因只能从母亲那里传来,以后只能传给他的女儿。

(2)男性患者多于女性患者;

抗维生素D佝偻病的致病基因是位于X染色体上的显性基因,这种病的遗传特点是:

女性患者多于男性患者。

总结:

(1)伴X隐性遗传的特点:

①男>女②隔代遗传(交叉遗传)③母病子必病,女病父必病

(2)伴X显性遗传的特点:

①女>男②连续发病③父病女必病,子病母必病

(3)伴Y遗传的特点:

①男病女不病②父→子→孙

附:

常见遗传病类型(要记住):

伴X隐:

色盲、血友病常隐:

先天性聋哑、白化病

伴X显:

抗维生素D佝偻病常显:

多(并)指

第三章基因的本质

第1节DNA是主要的遗传物质

一、1928年格里菲思的肺炎双球菌的转化实验:

1、肺炎双球菌有两种类型类型:

●S型细菌:

菌落光滑,菌体有夹膜,有毒性

●R型细菌:

菌落粗糙,菌体无夹膜,无毒性

2、实验过程(看书)

3、实验证明:

无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有毒性的S型活细菌。

这种性状的转化是可以遗传的。

推论(格里菲思):

在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促成这一转化的活性物质—“转化因子”。

二、1944年艾弗里的实验:

1、实验过程:

(如右图)

2、实验证明:

DNA才是R型细菌产生稳定遗传变化的物质。

(即:

DNA是遗传物质,蛋白质等不是遗传物质)

三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验

1、T2噬菌体机构和元素组成:

2、实验过程(看书)

3、实验结论:

子代噬菌体的各种性状是通过亲代的DNA遗传的。

(即:

DNA是遗传物质)

四、1956年烟草花叶病毒感染烟草实验证明:

在只有RNA的病毒中,RNA是遗传物质。

五、小结:

?

细胞生物

(真核、原核)

非细胞生物

(病毒)

核酸

DNA和RNA

DNA

RNA

遗传物质

DNA

DNA

RNA

因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。

第2节DNA的结构

1、DNA的组成元素:

C、H、O、N、P

2、DNA的基本单位:

脱氧核糖核苷酸(4种)

3、DNA的结构:

①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:

脱氧核糖和磷酸交替连接构成基本骨架。

内侧:

由氢键相连的碱基对组成。

③碱基配对有一定规律:

A=T;G≡C。

(碱基互补配对原则)

4、DNA的特性:

①多样性:

碱基对的排列顺序是千变万化的。

(排列种数:

4n(n为碱基对对数)

②特异性:

每个特定DNA分子的碱基排列顺序是特定的。

5、DNA的功能:

携带遗传信息(DNA分子中碱基对的排列顺序代表遗传信息)。

6、与DNA有关的计算:

在双链DNA分子中:

①A=T、G=C

②任意两个非互补的碱基之和相等;且等于全部碱基和的一半

例:

A+G=A+C=T+G=T+C=1/2全部碱基

第3节DNA的复制

1、概念:

以亲代DNA分子两条链为模板,合成子代DNA的过程

2、时间:

有丝分裂间期和减Ⅰ前的间期

3、场所:

主要在细胞核

4、过程:

(看书)①解旋②合成子链③子、母链盘绕形成子代DNA分子

5、特点:

半保留复制

6、原则:

碱基互补配对原则

7、条件:

①模板:

亲代DNA分子的两条链

②原料:

4种游离的脱氧核糖核苷酸

③能量:

ATP

④酶:

解旋酶、DNA聚合酶等

8、DNA能精确复制的原因:

①独特的双螺旋结构为复制提供了精确的模板;

②碱基互补配对原则保证复制能够准确进行。

9、意义:

DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。

10、与DNA复制有关的计算:

复制出DNA数=2n(n为复制次数)

含亲代链的DNA数=2

第4节基因是有遗传效应的DNA片段

1.基因是有遗传效应的DNA片段,是控制生物性状的结构和功能的基本单位。

每个DNA分子上有许多个基因。

基因的脱氧核苷酸排列的顺序包含着遗传信息。

2.DNA分子具有稳定性、多样性和特异性。

多样性产生的原因主要是碱基对的排列顺序千变万化,DNA分子特异性是脱氧核苷酸排列的特定顺序,每个DNA分子能够贮存大量的遗传信息。

遗传信息是脱氧核苷酸排列顺序

第四章基因的表达

第1节基因指导蛋白质的合成

一、RNA的结构:

1、组成元素:

C、H、O、N、P

2、基本单位:

核糖核苷酸(4种)

3、结构:

一般为单链

二、基因:

是具有遗传效应的DNA片段。

主要在染色体上

三、基因控制蛋白质合成:

1、转录:

(1)概念:

在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。

(注:

叶绿体、线粒体也有转录)

(2)过程(看书)

(3)条件:

模板:

DNA的一条链(模板链)原料:

4种核糖核苷酸

能量:

ATP酶:

解旋酶、RNA聚合酶等

(4)原则:

碱基互补配对原则(A—U、T—A、G—C、C—G)

(5)产物:

信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)

2、翻译:

(1)概念:

游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

(注:

叶绿体、线粒体也有翻译)

(2)过程:

(看书)

(3)条件:

模板:

mRNA原料:

氨基酸(20种)

能量:

ATP酶:

多种酶

搬运工具:

tRNA装配机器:

核糖体

(4)原则:

碱基互补配对原则

(5)产物:

多肽链

3、与基因表达有关的计算

基因中碱基数:

mRNA分子中碱基数:

氨基酸数=6:

3:

1

四、基因对性状的控制

1、中心法则

第2节基因对性状的控制

一、基因控制性状的方式:

(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;

(2)通过控制蛋白质结构直接控制生物的性状。

二、人类基因组计划及其意义

计划:

完成人体24条染色体上的全部基因的遗传作图、物理作图、和全部碱基的序列测定。

意义:

可以清楚的认识人类基因的组成、结构、功能极其相互关系,对于人类疾病的诊治和预防具有重要的意义

第五章基因突变及其他变异

第1节基因突变和基因重组

一、生物变异的类型

不可遗传的变异(仅由环境变化引起)

基因突变

可遗传的变异(由遗传物质的变化引起)基因重组

染色体变异

二、可遗传的变异

(一)基因突变

1、概念:

是指DNA分子中碱基对的增添、缺失或改变等变化。

2、原因:

物理因素:

X射线、激光等;

化学因素:

亚硝酸盐,碱基类似物等;

生物因素:

病毒、细菌等。

3、特点:

①发生频率低:

②方向不确定

③随机发生

基因突变可以发生在生物个体发育的任何时期;

基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上。

④普遍存在

4、结果:

使一个基因变成它的等位基因。

5、时间:

细胞分裂间期(DNA复制时期)

6、应用——诱变育种

①方法:

用射线、激光、化学药品等处理生物。

②原理:

基因突变

③实例:

高产青霉菌株的获得

④优缺点:

加速育种进程,大幅度地改良某些性状,但有利变异个体少。

7、意义:

①是生物变异的根本来源;

②为生物的进化提供了原始材料;

③是形成生物多样性的重要原因之一。

(二)基因重组

1、概念:

是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。

2、种类:

①减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。

组合的结果可能产生与亲代基因型不同的个体。

②减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。

结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。

③重组DNA技术

(注:

转基因生物和转基因食品的安全性:

用一分为二的观点看问题,用其利,避其害。

我国规定对于转基因产品必须标明。

3、结果:

产生新的基因型

4、应用(育种):

杂交育种(见前面笔记)

5、意义:

①为生物的变异提供了丰富的来源;

②为生物的进化提供材料;

③是形成生物体多样性的重要原因之一

(三)染色体变异(见第五章第二节)

第2节染色体变异

一、染色体结构变异:

实例:

猫叫综合征(5号染色体部分缺失)

类型:

缺失、重复、倒位、易位(看书并理解)

二、染色体数目的变异

1、类型

个别染色体增加或减少:

实例:

21三体综合征(多1条21号染色体)

以染色体组的形式成倍增加或减少:

实例:

三倍体无子西瓜

2、染色体组:

(1)概念:

二倍体生物配子中所具有的全部染色体组成一个染色体组。

(2)特点:

①一个染色体组中无同源染色体,形态和功能各不相同;

②一个染色体组携带着控制生物生长的全部遗传信息。

(3)染色体组数的判断:

①染色体组数=细胞中任意一种染色体条数

例1:

以下各图中,各有几个染色体组?

答案:

32514

②染色体组数=基因型中控制同一性状的基因个数

例2:

以下基因型,所代表的生物染色体组数分别是多少?

(1)Aa______

(2)AaBb_______

(3)AAa_______(4)AaaBbb_______

(5)AAAaBBbb_______(6)ABCD______

答案:

223341

3、单倍体、二倍体和多倍体

由配子发育成的个体叫单倍体。

有受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。

体细胞中含三个或三个以上染色体组的个体叫多倍体。

三、染色体变异在育种上的应用

1、多倍体育种:

方法:

用秋水仙素处理萌发的种子或幼苗。

(原理:

能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)

原理:

染色体变异

实例:

三倍体无子西瓜的培育;

优缺点:

培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。

2、单倍体育种:

方法:

花粉(药)离体培养

原理:

染色体变异

实例:

矮杆抗病水稻的培育

例:

在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。

现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?

优缺点:

后代都是纯合子,明显缩短育种年限,但技术较复杂。

附:

育种方法小结

诱变育种

杂交育种

多倍体育种

单倍体育种

方法

用射线、激光、

化学药品等处理

生物

杂交

用秋水仙素处理

萌发的种子或幼苗

花药(粉)离体培养

原理

基因突变

基因重组

染色体变异

染色体

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2