实验四pn结特性测量.docx

上传人:b****1 文档编号:15216287 上传时间:2023-07-02 格式:DOCX 页数:11 大小:96.07KB
下载 相关 举报
实验四pn结特性测量.docx_第1页
第1页 / 共11页
实验四pn结特性测量.docx_第2页
第2页 / 共11页
实验四pn结特性测量.docx_第3页
第3页 / 共11页
实验四pn结特性测量.docx_第4页
第4页 / 共11页
实验四pn结特性测量.docx_第5页
第5页 / 共11页
实验四pn结特性测量.docx_第6页
第6页 / 共11页
实验四pn结特性测量.docx_第7页
第7页 / 共11页
实验四pn结特性测量.docx_第8页
第8页 / 共11页
实验四pn结特性测量.docx_第9页
第9页 / 共11页
实验四pn结特性测量.docx_第10页
第10页 / 共11页
实验四pn结特性测量.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

实验四pn结特性测量.docx

《实验四pn结特性测量.docx》由会员分享,可在线阅读,更多相关《实验四pn结特性测量.docx(11页珍藏版)》请在冰点文库上搜索。

实验四pn结特性测量.docx

实验四pn结特性测量

实验四pn结特性测量

实验四pn结特性测量

一、前言

早在六十年代初,人们就试图用PN结正向压降随温度升高而降低的特性作为测温元件,由于当时PN结的参数不稳定,始终未进入实用阶段。

随着半导体工艺水平的提高及人们不断的探索,到七十年代时,PN结以及在此基础上发展起来的晶体管温度传感器,已成为一种新的测温技术跻身于各个领域了。

众所周知,常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它的不足之处,如热电偶适用温度范围宽,但灵敏度低、线性差且需要参考温度;热敏电阻灵敏度高、热响应快、体积小,缺点是非线性,这对于仪表的校准和控制系统的调节均感不便;测温电阻器如铂电阻虽有精度高、线性好的长处,但灵敏度低且价格贵;而PN结温度传感器则具有灵敏度高、线性好、热响应快和体小轻巧等特点,尤其是温度数字化、温度控制以及用微机进行温度实时信号处理等方面,仍是其它温度传感器所不能比的,其应用势必日益广泛。

目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组成一块集成电路。

美国Motorola电子器件公司在1979年就开始生产测温晶体管及其组件,如今灵敏度高达100mV/℃、分辨率不低于0.1℃的硅集成电路温度传感器也已问世。

但是以硅为材料的这类传感器也不是尽善尽美的,在非线性不超过标准值0.5%的条件下,其工作温度一般不超为-50℃~150℃,与其它温度传感器相比,测温范围的局限性较大,如果采用不同材料如锑化铟或砷化镓的PN结可以展宽低温区或高温区的测量范围。

八十年代中期我国就研制成功以SiC为材料的PN结温度传感器,其高温区可延伸到500℃,并荣获国际博览会金奖。

自然界有丰富的材料资源,而人类具有无穷的智慧,理想的温度传感器正期待着人们去探索、开发。

二、实验目的

1.了解PN结正向压降随温度变化的基本关系式。

2.在恒流供电条件下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。

3.学习用PN结测温的方法。

三、实验原理

理想PN结的正向电流IF和压降VF存在如下近似关系式。

(4.1)

其中q为电子电荷;k为玻尔兹曼常数;T为绝对温度;IS为反向饱和电流,它是一个和PN结材料的禁带宽度以及温度等有关的系数,可以证明

(4.2)

其中C是与结面积、掺杂浓度等有关的常数;r也是常数(见附录);Vg(0)为绝对零度时PN结材料的导带和价带顶的电势差。

将式(4.2)代入式(4.1),两边取对数可得

(4.3)

其中

方程(4.3)就是PN结正向压降作为电流和温度的函数表达式,它是PN结温度传感器的基本方程。

令IF=常数,则正向压降只随温度而变化,但是在方程(4.3)中,除线性项V1外还包含非线性项Vn1。

下面来分析一下Vn1项所引起的线性误差。

设温度由T1变为T时,正向电压由VF1变为VF,由式(4.3)可得

(4.4)

按理想的线性温度响应,VF应取如下形式

(4.5)

等于T1温度时的

值。

由式(4.3)可得

(4.6)

所以

(4.7)

由理想线性温度响应式(4.7)和实际响应式(4.4)相比较,可得实际响应对线性的理论偏差为

(4.8)

设T1=300K,T=310K,取r=3.4*,由式(4.8)可得△=0.048mV,而相应的VF的改变量为20mV,相比之下误差甚小。

不过当温度变化范围增大时,VF温度响应的非线性误差将有所递增,这主要由于r因子所致。

综上所述,在恒流供电条件下,PN结的VF对T的依赖关系取决于线性项V1,即正向压降几乎随温度升高而线性下降,这就是PN结测温的依据。

必须指出,上述结论仅适用于杂质全部电离,本征激发可以忽略的温度区间(对于通常的硅二极管来说,温度范围约-50℃~150℃)。

如果温度低于或高于上述范围时,由于杂质电离因子减小或本征载流子迅速增加,VF-T关系将产生新的非线性,这一现象说明VF-T的特性还随PN结的材料而异,对于宽带材料(如GaAs)的PN结,其高温端的线性区则宽;而材料杂质电离能小(如InSb)的PN结,则低温端的线性范围宽,对于给定的PN结,即使在杂质导电和非本征激发温度范围内,其线性度亦随温度的高低而有所不同,这是非线性项Vn1引起的,由Vn1对T的二阶导数

可知

的变化与T成反比,所以VF-T的线性度在高温优于低温端,这是PN结温度传感器的普遍规律。

此外,由式(4.4)可知,减小IF,可以改善线性度,但不能从根本上解决问题,目前行之有效的方法大致有两种:

1.利用对管的两个be结(将三极管的基极与集电极短路与发射极组成一个PN结),分别在不同电流IF1、IF2下工作,由此获得两者之差(VF1-VF2)与温度成线性函数关系,即

由于晶体管的参数有一定的离散性,实际与理论仍存在差距,但与单个PN结相比其线性度与精度均有所提高,这种电路结构与恒流、放大等电路集成一体,便构成集成电路温度传感器。

2.OkiraOhte等人提出的采用电流函数发生器来消除非线性误差。

由式(4.3)可知,非线性误差来自Tr项,利用函数发生器,IF比例于绝对温度的r次方,则VF-T的线性理论误差为Δ=0。

实验结果与理论值颇为一致,其精度可达0.01℃。

四、实验方法和内容

1.实验系统检查与连接

A.取下样品室的筒套(左手扶筒盖,右手扶筒套逆时针旋转),待测PN结管和测温元件应分放在铜座的左、右两侧圆孔内,其管脚不与容器接触,然后放好筒盖内的橡皮O圈,装上筒套。

O圈的作用是当样品室在冰水中进行降温时,以防止冰水渗透入室内。

B.控温电流开关置“关”位置,此时加热指示灯不亮。

接上加热电源线和信号传输线。

两者连线均为直插式,在连接信号线时,应先对准插头与插座的凹凸定位标记,再按插头的紧线夹部位,即可插入。

而拆除时,应拉插头的可动外套,决不可鲁莽左右转动,或操作部位不对而硬拉,否则可能拉断引线影响实验。

2.VF(0)或VF(TR)的测量和调零

将样品室埋入盛有冰水(少量水)的杜瓦瓶中降温,开启测试仪电源(电源开关在机箱后面,电源插座内装保险丝),预热数分钟后,将“测量选择”开关(以下简称K)拨到IF,由“IF调节”使IF=50μA,待温度冷却至0℃时,将K拨到VF,记下VF(0)值,再将K置于ΔV,由“ΔV调零”使ΔV=0。

本实验的起始温度TS亦可直接从室温TR开始,按上述步骤,测量VF(TR)并使ΔV=0。

3.测量ΔV-T曲线

取走冰瓶,开启加热电源(指示灯即亮),逐步提高加热电流进行变温实验,并记录对应的ΔV和T,至于ΔV、T的数据测量,可按ΔV每改变10或15mV立即读取一组ΔV、T,这样可以减小测量误差。

应该注意:

在整个实验过程中,升温速率要慢。

且温度不宜过高,最好控制在120℃左右。

4.求被测PN结正向压降随温度变化的灵敏度S(mV/℃)。

作ΔV-T曲线,其斜率就是S。

5.估算被测PN结材料硅的禁带宽度Eg(0)=qVg(0)电子伏。

根据(4.6)式,略去非线性项,可得

ΔT=-273.2°K,即摄氏温标与凯尔文温标之差。

将实验所得的Eg(0)与公认值Eg(0)=1.21电子伏比较,求其误差。

6.数据记录

实验起始温度TS=℃。

工作电流IF=μA。

起始温度为TS时的正向压降VF(TS)=mV。

五、预习思考题

1.测VF(0)或VF(TR)目的何在?

为什么实验要求测ΔV-T曲线而不是VF-T曲线。

2.测ΔV-T为何按ΔV的变化读取T,而不是按自变量T读取ΔV。

六、附录

1.(4.2)式的证明

对于P+N结(P+指P区为重掺杂),在杂质导电范围内,IS的表达式为

A为面积;Pn为N区的少数载流子(空穴)平均浓度;Lp为空穴扩散长度;Dp为扩散系数;Pn、Lp和Dp均随温度和材料的掺杂浓度而变化。

根据热平衡公式Pn=n12

n1为本征载流子浓度。

把N区的少子浓度用掺杂ND来表示,则

Eg(0)为绝对零度时的禁带宽度。

利用

为少数载流子寿命)和爱因斯坦关系

为空穴迁移率),将IS化为T的函数,则IS可改写成如下形式

上述内容可参阅黄昆、谢希德著半导体物理。

2.r的数值取决于少数载流子迁移率对温度的关系,通常取值r=3.4。

引自Advanceininstrumention,ISA76,Vo1.31part2。

TH—J型PN结正向压降温度特性实验组合仪

使用说明书

TH—J型PN结正向压降温度特性实验组合仪是了解温度传感器工作原理的关键物理实验,也是集电学和热学为一体的一个综合实验仪器,仪器设计合理、性能优异、读数直观、安全可靠,适用于大专院校的普通物理实验和有关专业的基础实验。

一、实验装置简介

A样品

样品室的结构如图4.1所示,其中A为样品室,是一个可卸的筒状的金属容器。

待测PN结样管(采用3DG6晶体管的基极与集电极短接作为正极,发射极作为负极,构成一只二极管)和测温元件(AD590)均置于铜座B上,其管脚通过高温导线分别穿过两旁空心细管与顶部插座P1连接。

加热器H装在中心管的支座下,其发热部位埋在铜座B的中心柱体内,加热电源的进线由中心管上方的插孔P2引入,P2和引线(外套瓷管)与容器绝缘,容器为电源负端,通过插件P1的专用线与测试仪机壳相连接地,将被测PN结的温度和电压信号输入测试仪。

B测试仪

测试仪由恒流源、基准电压源和显示等单元组成。

恒流源有两组,其中一组提供IF,电流输出范围为0~1000μA,连续可调,另一组用于加热,其控温电流为0.1~1A,分为十档,逐档递增或递减0.1A。

基准电压源亦分为两组,一组用于补偿PN结在0℃或室温TR时的正向压降VF(0)或VF(TR),可通过设置在面板上的“ΔV调零”电位器来实现ΔV=0,并满足此时,若升温,ΔV<0;若降温,则ΔV>0,则表明正向压降随温度升高而下降。

另一组基准电压源用于温标转换和校准,因本实验用AD590温度传感器测温,其输出电压以1mV/°K正比于绝对温度,它的工作温度范围为218.2~423.2°K(即-55~150℃),相应输出电压为218.2~423.2mV。

要求配置4½的LED显示器,为了简化电路而又保持测量精度,设置了一组273.2mV(相当于AD590在0℃时的输出电压)的基准电压,其目的是将上述的绝对温标转化成摄氏温标,则对应于-55~150℃的工作温区内,输送给显示单元的电压为-55~150mV。

便可采用量程为±200.0mV的3½位LED显示器进行测量。

另一组量程为±1000mV的3½位LED显示用于测量IF、VF和ΔV,可通过“测量选择”开关来实现。

此外,仪器设有VT(温度数字量)和ΔV的输出口,可供XY函数记录仪使用。

测量的框图如图4.2所示。

DS为待测PN结,RS为IF的取样电阻,开关K起测量选择与极性变换作用,其中R、P测IF,P、D测VF,S、P测ΔV。

二、主要技术指标

1.样管工作电流源

输出电流:

0~1000μA,连续可调,调节精度可达1mA。

电流稳定度:

优于10-3(交流输入电压变化

%);

负载稳定度:

优于10-3(负载由额定值变为零);

电流指示:

3½位发光管数字显示,精度不低于0.5%。

1、加热电流源:

0.1~1A,分为十档,逐档递增或递减0.1A,最大输出负载电压15V。

2、温度传感器AD590:

温度范围:

218.2~423.2°K(即-55℃~150℃);

输出电压范围:

218.2~423.2mV;

测量误差:

小于0.5℃。

3、电流、电压和温度的测量分别采用两组3½位LED显示,精度不低于0.5%。

二、使用说明

1、按照样品结构图组装样品架。

2.顺时针旋转IF调节钮,取样IF=50μA;控温电流开关置“关”位置;将两端代插头的四芯屏蔽电缆一端插入测试仪的“信号输入”插座,另一端插入样品室顶部插座。

连接时,应先将插头与插座的凹凸定位部分对准,再按插头得紧线夹部位,便可插入;在拆除时,只要拉插头的可动外套部委即可,切勿扭转或硬拉,以免断线。

打开位于机箱背部后的电源开关,两组显示器即有指示,如发现数字乱跳或溢出(即首位显示“1”,后三位不显示),应检查信号耦合电缆插头是否插好或电缆芯线有否折断或脱焊机检查待测PN结和测温元件管教是否与容器短路或引线脱落。

3、将“测量选择”开关(以下简称K)拨到IF,转动“IF调节”旋钮,IF值可变,将K拨到VF,调IF,VF亦变,再将K拨到

,转动“

调零”旋钮,可使

=0,说明仪器以上功能正常。

4、将两端带“手枪式”插头导线分别插入测试仪的加热电源输出孔和样品室的输入孔,启动控温电流开关(置0.2A档)加热指示灯即亮,1~2分钟后,即可以显示出温度上升。

至此,仪器运行正常。

5、仪器的温标设定,在出厂之前已在0℃(冰、水混合)条件进行严格校准,如有偏差可在室温(分辨率为0.1℃温标)实现复校。

6.户如果要求试验的温度范围为0~120℃,需要自备一只广口杜瓦瓶。

PN结正向压降温度特性实验组合仪安装指南

用户收到实验仪包箱后,请按下列步骤安排、检验仪器是否正常:

1、打开实验仪包箱。

按装箱单上列出的配件清单检查个配件是否完备,运输途中又无损坏。

2、打开实验品结构图组装样品架,样品室的结构参照附录1使用说明书中的图1。

将两端带插头的屏蔽电缆一端插测试仪的“信号输入”插座,另一端插入样品实验室的顶部插座。

连接时,应先将插头与插座的凹凸定位部位对准,再按插头的紧线夹部位,便可插入;在拆线时,只要拉插头的可动外套部位即可,切勿扭转或硬拉,以免断线。

将两端带“手枪式”插头导线分别插入测试仪的加热电源输出孔和样品室的输入孔

3.开位于机箱背部后的电源开关,两组显示器即有指示,如发现数字乱跳或溢出(即首位显示“1”,后三位不显示),应检查信号耦合电缆插头是否插好或电缆芯线有否折断或脱焊机检查待测PN结和测温元件管教是否与容器短路或引线脱落。

4、将“测量选择”开关(以下简称K)拨到IF,转动“IF调节”旋钮,IF值可变,将K拨到VF,调IF,VF亦变,再将K拨到

,转动“

调零”旋钮,可使

=0,说明仪器以上功能正常。

5、启动控温电流开关(置0.2A档)加热指示灯即亮,1~2分钟后,即可以显示出温度上升。

经过以上步骤检查仪器后即可投入使用。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2