土建专业外文翻译7.docx

上传人:b****5 文档编号:15222680 上传时间:2023-07-02 格式:DOCX 页数:10 大小:34.86KB
下载 相关 举报
土建专业外文翻译7.docx_第1页
第1页 / 共10页
土建专业外文翻译7.docx_第2页
第2页 / 共10页
土建专业外文翻译7.docx_第3页
第3页 / 共10页
土建专业外文翻译7.docx_第4页
第4页 / 共10页
土建专业外文翻译7.docx_第5页
第5页 / 共10页
土建专业外文翻译7.docx_第6页
第6页 / 共10页
土建专业外文翻译7.docx_第7页
第7页 / 共10页
土建专业外文翻译7.docx_第8页
第8页 / 共10页
土建专业外文翻译7.docx_第9页
第9页 / 共10页
土建专业外文翻译7.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

土建专业外文翻译7.docx

《土建专业外文翻译7.docx》由会员分享,可在线阅读,更多相关《土建专业外文翻译7.docx(10页珍藏版)》请在冰点文库上搜索。

土建专业外文翻译7.docx

土建专业外文翻译7

外文翻译

Problems

1Fromthedatagiveninfigure4.18,calculatethetangentmodulusandPoisson’sratiofortheinitialelasticbehavioroflimestonewithσ3=2.0MPa.

2Aporoussandstonehasauniaxialcompressivestrengthofσc=75MPa.theresultsofaseriesoftriaxialcompressiontestsplottedonshearstress-normalstressaxesgivealinearCoulombpeakstrengthenvelopehavingaslopeof45o

Determinetheaxialstressatpeakstrengthofajacketedspecimensubjectedtoaconfiningpressureofσ3=10MPa.Ifthejackethadbeenpuncturedduringthetestandtheporepressurehadbuiltuptoaequaltotheconfiningpressure,whatwouldthepeakaxialstresshavebeen?

3(a)EstablishanapproximatepeakstrengthenvelopeforthemarbleforwhichthedateshowninFigure4.19wereobtained.

3(b)Inwhatwaysmighttheobservedstress-strainbehaviorofthespecimenshavedifferedhadthetestsbeencarriedoutinaconventionaltestingmachinehavingalongitudinalstiffnessof2.0GNm-1?

Assumethatallspecimenswere50mmindiameter100mmlong.

ROCKSTRENGTHANDDEFORMABILITY

4Aseriesoflaboratorytestsonintactspecimensofquartzitegavethefollowingmeanpeakstrengths.TheunitsofstressareMPa,andcompressionistakenaspositive.

 

 

triaxial

compression

σ2=σ3

100

100

135

130

160

150

200

180

298

248

435

335

 

biaxial

tension/

compression

σ1

σ2

σ3

0

0

0

-13

-13.5

218

50

-13

225

100

0

228

150

0

210

210

0

Developapeakstrengthcriterionforthequartziteforuseinundergroundexcavationdesign.Experiencehasshownthatinsituuniaxialcompressivestrengthofthequartziteisone-halfthelaboratoryvalue.

5Aseriesoftriaxialcompressiontestsonspecimensofaslategavethefollowingresults:

 

Confiningpressure

σ3(MPa)

Peakaxialstress

σ1(MPa)

Anglebetweencleavageandσ1αo

2.0

5.0

10.0

15.0

20.0

62.0

62.5

80.0

95.0

104.0

40

32

37

39

27

Ineachtest,failureoccurredbyshearalongthecleavage.Determinetheshearstrengthcriterionforcleavageplans.

6InafurtherseriesoftestsontheslateforwhichthedataofProblem5wereobtained,itwasfoundthat,whenfailureoccurredindirectionsotherthanalongthecleavage,thepeakstrengthofrockmaterialwasgivenby

σ1=150+2.8σ3

whereσ1andσ3areinMPa.

Constructagraphshowingtheexpectedvariationofpeakaxialstressataconfiningpressureof10MPa,astheanglebetweenthecleavageandthespecimenaxisvariesfrom0oto90o.

7Thefollowingresultswereobtainedinaseriesofdirectsheartestscarriedouton100mmsquarespecimensofgranitecontainingclean,rough,dryjoints.

 

Normalstress

Peakshearstrength

Residualshearstrength

Displacementatpeakshearstrength

Normal

Shear

σn(MPa)

τp(MPa)

τr(MPa)

υ(mm)

μ(mm)

0.25

0.25

0.15

0.54

2.00

0.50

0.50

0.30

0.67

2.50

1.00

1.00

0.60

0.65

3.20

2.00

1.55

1.15

0.45

3.60

3.00

2.15

1.70

0.30

4.00

4.00

2.60

0.15

4.20

(a)Determinethebasicfrictionangleandtheinitialroughnessangleforthejointsurfaces.

(b)Establishapeakshearstrengthcriterionforthejoints,suitableforuseintherangeofnormalstresses,0-4MPa.

(c)Assuminglinearshearstress-sheardisplacementrelationstopeakshearstrength,investigatetheinfluenceofnormalstressontheshearstiffnessofthejoints.

8AtriaxialcompressiontestistobecarriedoutonaspecimenofgranitereferredtoinProblem7withthejointplaneinclinedat35otothespecimenaxis.Aconfiningpressureofσ3=1.5MPaandanaxialstressofσ1=3.3MPaaretobeapplied.Thenajointwaterpressurewillbeintroducedandgraduallyincreasedwithσ1andσ3heldconstant.Atwhatjointwaterpressureissliponthejointexpectedtooccur?

Repeatthecalculationforasimilartestinwhichσ1=4.7MPaandσ3=1.5MPa.

9Intheplaneofcrosssectionofanexcavation,arockmasscontainsfoursetsofdiscontinuitiesmutuallyinclinedat45o.TheshearstrengthsofalldiscontinuitiesaregivenbyalinearCoulombcriterionwithc’=100kPaandφ’=30o.

DevelopanisotropicstrengthcriterionfortherockmassthatapproximatethestrengthobtainedbyapplyingJaeger’ssingleplaneofweaknesstheoryinseveralparts.

10Acertainslatecanbetreatedasatransverselyisotropicelasticmaterial.Blocksamplesoftheslateareavailablefromwhichcoresmaybepreparedwiththecleavageatchosenanglestothespecimenaxes.

Nominateasetofteststhatcouldbeusedtodeterminethefiveindependentelasticconstantsinequation2.42requiredtocharacterizethestress-strainbehavioroftheslateinuniaxialcompression.Whatmeasurementsshouldbetakenineachofthesetests?

5Pre-miningstateofstress

5.1Specificationofthepre-miningstateofstress

Thedesignofanundergroundstructureinrockdiffersfromothertypesofstructuraldesigninthenatureoftheloadsoperatinginthesystem.Inconventionalsurfacestructures,thegeometryofthestructureanditsoperatingdutydefinetheloadsimposedonthesystem.Foranundergroundrockstructure,therockmediumissubjecttoinitialstresspriortoexcavation.Thefinal,post-excavationstateofstressinthestructureistheresultantoftheinitialstateofstressandstressesinducedbyexcavation.Sinceinducedstressesaredirectlyrelatedtotheinitialstresses,itisclearthatspecificationanddeterminationofthepre-miningstateofstressisanecessaryprecursortoanydesignanalysis.

Themethodofspecifyingtheinsitustateofstressatapointinarockmass,relativetoasetofreferenceaxes,isdemonstratedinFigure5.1.AconvenientsetofCartesianglobalreferenceaxesisestablishedbyorientingthexaxistowardsminenorth,ytowardsmineeast,andzverticallydownwards.Theambientstresscomponentsexpressedrelativetotheseaxesaredenotedpxx,pyy,pzz,pxy,pyz,pzx.UsingthemethodsestablishedinChapter2,itispossibletodetermine,fromthesecomponents,themagnitudesofthefieldprincipalstresspi(i=1,2,3),andtherespectivevectorsofdirectioncosines(λxi,λyi,λzi)forthethreeprincipalaxes.Thecorrespondingdirectionanglesyieldadipangle,αi,andabearing,ordipazimuth,βi,foreachprincipalaxis.Thespecificationofthepre-miningstateofstressiscompletedbydefiningtheratiooftheprincipalstressesintheformp1:

p2:

p3=1.0:

q:

rwherebothqandrarelessthanunity.

Theassumptionmadeinthisdiscussionisthatitispossibletodeterminetheinsitustateofstressinawaywhichyieldsrepresentativemagnitudesofthecomponentsofthefieldstresstensorthroughoutaproblemdomain.Thestateofstressintherockmassisinferredtobespatiallyquitevariable,duetothepresenceofstructuralfeaturessuchasfaultsorlocalvariationinrockmaterialproperties.Spatialvariationinthefieldstresstensormaybesometimesobservedasanapparentviolationoftheequationofequilibriumfortheglobalz(vertical)direction.Sincethegroundsurfaceisalwaystraction-free,simplestaticsrequiresthattheverticalnormalstresscomponentatasub-surfacepointbegivenby

Pzz=γz(5.1)

Whereγistherockunitweight,andzisthedepthbelowgroundsurface.

Failuretosatisfythisequilibriumcondition(equation5.1)inanyfielddeterminationofthepre-miningstateofstressmaybeavalidindicationofheterogeneityofthestressfield.Forexample,theverticalnormalstresscomponentmightbeexpectedtobelessthanthevaluecalculatedfromequation5.1,forobservationsmadeintheaxialplaneofananticlinalfold.

Acommonbutunjustifiedassumptionintheestimationoftheinsitustateofstressisaconditionofuniaxialstrain(‘completelateralrestraint’)duringdevelopmentofgravitationalloadingofaformationbysuperincumbentrock.Forelasticrockmassbehavior,horizontalnormalstresscomponentsarethengivenby

(5.2)

WhereνisPoisson’sratiofortherockmass.

Ifitisalsoassumedthattheshearstresscomponentspxy,pyz,pzxarezero,thenormalstressesdefinedbyequations5.1and5.2areprincipalstresses.

Reportsandsummariesoffieldobservations(Hookeretal.,1972;BrownandHoek,1978)indicatethatfordepthsofstressdeterminationsofminingengineeringinterest,equation5.2israrelysatisfied,andtheverticaldirectionisrarelyaprincipalstressdirection.Theseconditionsarisefromthecomplexloadpathandgeologicalhistorytowhichanelementofrockistypicallysubjectedinreachingitscurrentequilibriumstateduringandfollowingorebodyformation.

 

译文

问题

1在σ3=2.0MPa的条件下,石灰石的初始弹性行为包括计算切线模量和泊松比可由图4.18所给出的数据显示出来。

2多孔砂岩的单轴抗压强度σc=75MPa。

由一系列的三轴压缩试验结果绘制出的剪应力正常应力轴显示的库仑强度峰值线性强度包络图有一个45o的倾斜。

确定套嵌标本遭受的围压σ3=10MPa轴向强度应力峰值。

如果套嵌在试验过程中被刺破,孔隙水压力已建立起一个平衡的围压值,那么轴向应力峰值又会怎样?

3(a)建立一个大理岩近似峰值强度包络图如图4.19所示。

3(b)通过采取何种方式可以观测到试样的应力应变行为由不同的试验进行了常规试验机上得出的线性刚度为2.0GNm-1?

假定所有标本,直径为50mm长100毫米。

岩石强度和应变

4一系列完整的石英岩试样的实验室试验给出了以下平均强度峰值。

应力的单位是兆帕,并且压缩性为刚性。

 

三轴压缩

σ2=σ3

100

100

135

130

160

150

200

180

298

248

435

335

 

双轴

拉伸/压缩

σ1

σ2

σ3

0

0

0

-13

-13.5

218

50

-13

225

100

0

228

150

0

210

210

0

制定一个石英岩的峰值强度标准用于地下洞室的开挖设计。

经验表明,石英岩的原位单轴抗压强度值是实验室所测值的一半。

5一系列板岩试样的三轴压缩试验结果如下:

围压

σ3(MPa)

轴向应力峰值

σ1(MPa)

解理和σ1的角度α

(o)

2.0

5.0

10.0

15.0

20.0

62.0

62.5

80.0

95.0

104.0

40

32

37

39

27

在每一个试样中,试样沿着解理面发生剪切破坏。

进而确定解理平面图的抗剪强度标准。

6在问题5所得数据的基础上,对板岩做了一系列进一步的实验,人们发现,当破坏方向不是沿着解理时,岩石材料的峰值强度由公式

σ1=150+2.8σ3计算得到。

其中σ1和σ3的单位为MPa。

构建一个图表显示了轴向应力峰值在围压为10兆帕时的预期变化,因为解理和试样轴向之间的夹角从0o到90o变化。

7以下结果是在一系列100毫米见方的含有新鲜,粗糙,隐形裂隙交织的花岗岩试样上进行直接剪切试验得到的。

正应力

峰值抗剪强度

残余抗剪强度

位移峰值抗剪强度

法向

切向

σn(MPa)

τp(MPa)

τr(MPa)

υ(mm)

μ(mm)

0.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2