教学高一下期物理必修2教案76 经典力学的局限性.docx

上传人:b****6 文档编号:15505614 上传时间:2023-07-05 格式:DOCX 页数:13 大小:28.84KB
下载 相关 举报
教学高一下期物理必修2教案76 经典力学的局限性.docx_第1页
第1页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第2页
第2页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第3页
第3页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第4页
第4页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第5页
第5页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第6页
第6页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第7页
第7页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第8页
第8页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第9页
第9页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第10页
第10页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第11页
第11页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第12页
第12页 / 共13页
教学高一下期物理必修2教案76 经典力学的局限性.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

教学高一下期物理必修2教案76 经典力学的局限性.docx

《教学高一下期物理必修2教案76 经典力学的局限性.docx》由会员分享,可在线阅读,更多相关《教学高一下期物理必修2教案76 经典力学的局限性.docx(13页珍藏版)》请在冰点文库上搜索。

教学高一下期物理必修2教案76 经典力学的局限性.docx

教学高一下期物理必修2教案76经典力学的局限性

高中物理课堂教学教案年月日

课题

§7.6经典力学的局限性

课型

新授课(2课时)

教学目标

知识与技能

1.知道牛顿运动定律的适用范围.

2.了解经典力学在科学研究和生产技术中的广泛应用.

3.知道质量与速度的关系,知道高速运动中必须考虑速度随时

过程与方法

通过阅读课文体会一切科学都有自己的局限性,新的理论会不断完善和补充旧的理论,人类对科学的认识是无止境的.

情感、态度与价值观

通过对牛顿力学适用范围的讨论,使学生知道物理中的结论和规律一般都有其适用范围,认识知识的变化性和无穷性,培养献身于科学的时代精神.

教学重点、难点

教学重点

牛顿运动定律的适用范围

教学难点

高速运动的物体,速度和质量之间的关系.

教学方法

探究、讲授、讨论、练习

教学手段

教具准备

录像资料,多媒体课件

教学活动

师:

自从17世纪以来,以牛顿运动定律为基础的经典力学不断发晨,如:

在宏观、低速、弱引力的广阔领域,包括天体力学的研究中取得了巨大的成就.经典力学在科学研究和生产技术中有了广泛的应用,如,从地面物体的运动到天体的运动,从大气的流动到地壳的变动,从拦河筑坝、修建桥梁到设计各种机械;从自行车到汽车、火车、飞机等各种交通工其:

从投出的篮球到发射火箭、人造卫星、宇宙飞船……从而证明了牛顿运动定律的正确性。

但是,经典力学也不是万能的,像一切科学一样,它没有也不会穷尽一切真理,它也有自己的局限性.它像一切科学理论一样,是一部“未完成的交响曲”.那么经典力学在什么范围内适用呢?

有怎样的局限性

呢?

这节课我们就来了解这方面的知识.

一、从低速到高速

(展示问题)

师:

请同学们阅读教材“从低速到高速”部分.回答低速与高速的概念、质速关系、速度合成与两个公设.

生:

低速到高速的概念,通常所见的物体的运动皆为低速运动,如行驶的汽车,发射的导弹、人造卫星及宇宙飞船等.有些微观粒子在一定条件下其速度可以与光速相接近,这样的速度称为高速.

质速关系是:

在经典力学中,物体的质量是不变的,但爱因斯坦的狭义相对论指出,物体的质量随速度的增大而增大,即

其中Db为静止质量,m是物体速度为v时的质量,c是真空中的光速.

例如:

(1)v=0.8c时,物体的质量约增大到静止质量的1.7倍,这时经典力学就不再适用了.

(2)如地球以v=30km/s的速度绕太阳公转时,m=l010lOlmo,它的质量增大十分微小,可以忽略不计.

速度合成与两个公设.一条河流中的水以相对河岸的速度v水岸流动,河中的船以相对于河水的速度v船水顺流而下.在经典力学中,船相对于岸的速度即为v船岸=v船水+v水岸

经验告诉我们,这简直是天经地义的.但是,仔细一看,这个关系式涉及两个不同的惯性参考系,而速度总是与位移(空间长度)及时间间隔的测量相联系.在牛顿看来,位移和时间的测量与参考系无关,正是在这种时空的观念下,上式才成立.然而,相对论认为,同一过程的位移和时间的测量在不同的参考系中是不同的,因而上式不能成立,经典力学也就不再适用了.

(1)相对性原理:

物理规律在一切惯性参考系中都具有相同的形式.

(2)光速不变原理:

在一切惯性参考系中,测量到的真空中的光速‘都一样.

师:

经典力学是适用于低速运动的物体还是适用于高速运动的物体呢?

生:

适用于低速运动的物体.

师:

阅读教材科学漫步部分,体会时间和空间是什么.

生:

时间与空间并没有讲清时间与空间的问题,只是提出问题,激励我们对未来的探索.

二、从宏观到微观

师:

请同学们阅读教材“从宏观到微观”部分,并说明经典力学是适用于宏观物体还是微观物体。

生:

19世纪末到20世纪初,人们相继发现了电子、质子、中子等微观粒子,发现它们不仅具有粒子性,面且具有波动性,它们的运动规律不能用经典力学描述.

20世纪20年代,建立了量子力学,它能够正确地描述微观粒子运动的规律性,并在现代科学技术中发挥了重要作用.

经典力学一般不适用于微观粒子.

师:

相对论和量子力学的出现,是否表示经典力学失去了意义?

生:

相对论和量子力学的出现,说明人类对自然界的认识更加广泛和深入,而不表示经典力学失去了意义.它只是使人们认识到经典力学有它的适用范围:

只适用于低速运动,不适用于高速运动,只适用于宏观世界,不适用于微观世界。

三,从弱引力到强引力

(展示问题)

师:

请同学们阅读教材“从弱引力到强引力”部分,并回答问题:

何为弱引力?

何为强引力?

生:

万有引力属于弱引力.利用万有引力定律可以解释天体的运动,并预言和发现了海王星和冥王星,首次把天上的星体运动规律与地面物体的运动规律统一起来.

爱因斯坦引力理论表明,当天体半径减小到一定程度时(太阳的引力半径为3km,地球的引力半径为1m),天体间的引力就趋于无穷大.

1.20世纪初,著名物理学家爱因斯坦提出了,改变了经典力学的一些结论.在经典力学中,物体的质量是的,而相对论指出质量随着速度变化而

2.20世纪初期,建立了,它能够正确地描述微观粒子的运动规律.

3.经典力学只适用于解决问题,不能用来处理——问题,经典力学只适用于物体,一般不适用于.

4.微观粒子的运动不仅具有性.同时具有波动性.它们的运动规律很多情况下不能用经典力学来说明.要增强正确描述微观粒子的运动规律,需要用.

5.牛顿运动规律只适用于物体的运动,狭义相对论阐述物体在以的速度运动时所遵从的规律.

参考答案

1.狭义相对论固定不变变化

2.量子力学

3.低速运动高速运动宏观微观粒子

4.粒子量子力学

5.宏观、低速接近光速

本节学习了经典力学的局限性:

(1)从低速到高速:

在经典力学中,物体的质量m是不随运动状态改变的,而狭义相对论指出,质量要随着物体的运动速度的增大而增大.即

(2)从宏观到微观:

相对论和量子力学的出现,并不说明经典力学失去了意义.只说明它有一定的适用范围:

只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.

(3)从弱引力到强引力:

相对论物理学与经典物理学的结论没有区别.相对论与量子力学

都没有否定过去的科学,而只是认为科学在一定条件下有其特殊性.经典力学只适用于弱引力,不适用于强引力.

学生活动

作业

认真阅读教材.认识到物理中的结论和规律一般都有其适用范围,认识知识的变化性和无穷性,培养献身于科学的时代精神.

阅读教材83页‘科学足迹’栏目中的短文《牛顿的科学生涯,,体会和学习牛顿献身科学的精神.

板书设计

6.经典力学的局限性

一、从低速到高速经典力学只适用于低速运动

二、从宏观到微观经典力学只适用于宏观物体

三、从弱引力到强引力万有引力定律只适用于弱引力

教学后记

 

 

以下为赠送文档:

气体热现象的微观意义

 一、教学目标

1.在物理知识方面的要求:

(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。

(2)能用气体分子动理论解释三个气体实验定律。

2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。

3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。

二、重点、难点分析

1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。

2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。

三、教具

计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件。

四、主要教学过程

(一)引入新课

先设问:

气体分子运动的特点有哪些?

答案:

特点是:

(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。

(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。

气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。

(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。

(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。

今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。

(二)教学过程设计

1.关于气体压强微观解释的教学

首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:

温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率

体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内

n越小。

然后再设问:

气体压强大小反映了气体分子运动的哪些特征呢?

这应从气体对容器器壁压强产生的机制来分析。

先让学生看用计算机模拟气体分子运动撞击器壁产生压强的机制:

首先用计算机软件在大屏幕上显示出如图1所示的图形:

向同学介绍:

如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长。

如果在气缸内密封了一定质量的理想气体。

由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子。

大屏幕上显示图2,即图中显示的仅为总分子数的合,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:

大屏幕上显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面。

时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格。

得出结论:

由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。

进一步分析:

若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强。

由此可推出:

气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关。

对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。

2.用气体分子动理论解释实验三定律

(1)教师引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。

范例:

用气体分子动理论解释玻意耳定律。

一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。

这就是玻意耳定律。

书面符号简易表述方式:

小结:

基本思维方法(详细文字表述格式)是:

依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。

若吻合则实验定律得到了微观解释。

(2)让学生体验上述思维方法:

每个人都独立地用书面详细文字叙述和用符号简易表述的方法来对查理定律进行微观解释,然后由平时物理成绩较好的学生口述,与下面正确答案核对。

书面或口头叙述为:

一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。

这与查理定律的结论一致。

用符号简易表示为:

(3)让学生再次练习,用气体分子动理论解释盖·吕萨克定律。

再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对。

一定质量(m)的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。

这与盖·吕萨克定律的结论是一致的。

用符号简易表示为:

(三)课堂小结

1.本节课我们首先明确了气体状态参量与相关的气体分子运动的微观物理量间的关系着重从气体分子动理论的观点认识到气体对容器壁的压强是大量分子连续不断地对器壁碰撞产生的,且由分子的平均速率和分子密度共同决定其大小。

2.本节课我们重点学习了用气体分子动理论的观点来解释气体三个实验定律的方法。

五、说明

1.本节课设计用计算机模拟气体分子对器壁碰撞而产生压强是为了使学生有一点感性认识,帮助学生想象,其中有两点需要说明,一是弹簧的形变(活塞的位移)说明活塞受到了压力,二是图中所示的“分子”数只是示意图,其“大量”的含义是无法(也没必要)用具体图形表示。

2.本节课用气体分子动理论解释实验定律的侧重点在于教会学生“解释”的方法,它是一种从宏观到微观,又由微观到宏观的有序而又严密的推理。

因此对三个定律解释方式是先教师示范,讲清方法,再让学生独立思考,自行体验,最后反复练习,熟练掌握。

既采用详细表述又用符号简易表示,其目的也是为了训练学生既严密又简练的逻辑思维。

3.由于温度只是气体分子平均动能的标志,它与分子平均速率v只能推出定性的相关关系,中学阶段无法得到定量的相关关系,因此对查理定律和盖·吕萨克定律也只能进行定性解释,不能定量的推出正比关系。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2