传感器与检测技术习题.docx

上传人:b****6 文档编号:15897104 上传时间:2023-07-08 格式:DOCX 页数:34 大小:133.04KB
下载 相关 举报
传感器与检测技术习题.docx_第1页
第1页 / 共34页
传感器与检测技术习题.docx_第2页
第2页 / 共34页
传感器与检测技术习题.docx_第3页
第3页 / 共34页
传感器与检测技术习题.docx_第4页
第4页 / 共34页
传感器与检测技术习题.docx_第5页
第5页 / 共34页
传感器与检测技术习题.docx_第6页
第6页 / 共34页
传感器与检测技术习题.docx_第7页
第7页 / 共34页
传感器与检测技术习题.docx_第8页
第8页 / 共34页
传感器与检测技术习题.docx_第9页
第9页 / 共34页
传感器与检测技术习题.docx_第10页
第10页 / 共34页
传感器与检测技术习题.docx_第11页
第11页 / 共34页
传感器与检测技术习题.docx_第12页
第12页 / 共34页
传感器与检测技术习题.docx_第13页
第13页 / 共34页
传感器与检测技术习题.docx_第14页
第14页 / 共34页
传感器与检测技术习题.docx_第15页
第15页 / 共34页
传感器与检测技术习题.docx_第16页
第16页 / 共34页
传感器与检测技术习题.docx_第17页
第17页 / 共34页
传感器与检测技术习题.docx_第18页
第18页 / 共34页
传感器与检测技术习题.docx_第19页
第19页 / 共34页
传感器与检测技术习题.docx_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

传感器与检测技术习题.docx

《传感器与检测技术习题.docx》由会员分享,可在线阅读,更多相关《传感器与检测技术习题.docx(34页珍藏版)》请在冰点文库上搜索。

传感器与检测技术习题.docx

传感器与检测技术习题

传感器与检测技术复习题

0.1传感器在检测系统中有什么作用和地位?

答:

传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

0.2解释下列名词术语:

1)敏感元件;2)传感器;3)信号调理器;4)变送器

答:

①敏感元件:

指传感器中直接感受被测量的部分。

②传感器:

能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。

③信号调理器:

对于输入和输出信号进行转换的装置。

④变送器:

能输出标准信号的传感器。

1.1某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。

解:

1.2某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:

S1=0.2mV/℃、S2=2.0V/mV、S3=5.0mm/V,求系统的总的灵敏度。

解:

1.3测得某检测装置的一组输入输出数据如下:

x

0.9

2.5

3.3

4.5

5.7

6.7

y

1.1

1.6

2.6

3.2

4.0

5.0

a)试用最小二乘法拟合直线,求其线性度和灵敏度;

b)用C语言编制程序在微机上实现。

解:

拟合直线灵敏度0.68,线性度±7%。

1.8什么是传感器的静特性?

有哪些主要指标?

答:

静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

1.9如何获得传感器的静特性?

答:

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

1.10传感器的静特性的用途是什么?

答:

人们根据传感器的静特性来选择合适的传感器。

1.11试求下列一组数据的各种线性度:

x

1

2

3

4

5

6

y

2.20

4.00

5.98

7.9

10.10

12.05

1)理论(绝对)线性度,给定方程为y=2.0x;

2)端点线性度;

3)最小二乘线性度。

解:

①理论线性度:

②端点线性度:

由两端点做拟和直线

中间四点与拟合直线误差:

0.170.160.110.08

所以,

③最小二乘线性度:

所以,

1.12在对量程为10MPa的压力传感器进行标定时,传感器输出电压值与压力值之间的关系如下表所示,简述最小二乘法准则的几何意义,并讨论下列电压-压力曲线中哪条最符合最小二乘法准则?

测量次数I

1

2

3

4

5

压力xi(MPa)

2

4

6

8

10

电压yi(V)

10.043

20.093

30.153

40.128

50.072

(1)y=5.00x-1.05

(2)y=7.00x+0.09

(3)y=50.00x-10.50

(4)y=-5.00x-1.05

(5)y=5.00x+0.07

答:

最小二乘法准则的几何意义在于拟和直线精密度高即误差小。

将几组x分别带入以上五式,与y值相差最小的就是所求,(5)为所求。

2.1在用直流电桥测量电阻的时候,若标准电阻Rn=10.0004Ω的电桥已经平衡(则被测电阻Rx=10.0004Ω),但是由于检流计指针偏转在±0.3mm以内时,人眼就很难观测出来,因此Rn的值也可能不是10.0004Ω,而是Rn=10.0004Ω±ΔRn。

若已知电桥的相对灵敏度Sr=1mm/0.01%,求对应检流计指针偏转±0.3mm时,ΔRn?

解:

2.2如图F1-1所示电路是电阻应变仪中所用的不平衡电桥的简化电路,图中R2=R3=R是固定电阻,R1与R4是电阻应变片,工作时R1受拉,R4受压,ΔR表示应变片发生应变后,电阻值的变化量。

当应变片不受力,无应变时ΔR=0,桥路处于平衡状态,当应变片受力发生应变时,桥路失去了平衡,这时,就用桥路输出电压Ucd表示应变片应变后的电阻值的变化量。

试证明:

Ucd=(E/2)(ΔR/R)

证:

略去

的第二项,即可得

2.3说明电阻应变片的组成和种类。

电阻应变片有哪些主要特性参数?

2.5一个量程为10kN的应变式测力传感器,其弹性元件为薄壁圆筒轴向受力,外径20mm,内径18mm,在其表面粘贴八各应变片,四个沿周向粘贴,应变片的电阻值均为120Ω,灵敏度为2.0,波松比为0.3,材料弹性模量E=2.1×1011Pa。

要求:

1)绘出弹性元件贴片位置及全桥电路;

2)计算传感器在满量程时,各应变片电阻变化;

3)当桥路的供电电压为10V时,计算传感器的输出电压。

解:

满量程时:

2.9应变片产生温度误差的原因及减小或补偿温度误差的方法是什么?

答:

在外界温度变化的条件下,由于敏感栅温度系数

及栅丝与试件膨胀系数(

)之差异性而产生虚假应变输出,有时会产生与真实应变同数量级的误差。

方法:

自补偿法线路补偿法

2.10今有一悬臂梁,在其中上部上、下两面各贴两片应变片,组成全桥,如图F1-5所示。

该梁在其悬臂梁一端受一向下力F=0.5N,试求此时这四个应变片的电阻值。

已知:

应变片灵敏系数K=2.1;应变片空载电阻R0=120Ω。

解:

2.11图F1-6所示一受拉的10#优质碳素钢杆。

试用允许通过的最大电流为30mA的康铜丝应变片组成一单臂受感电桥。

试求出此电桥空载时的最大可能的输出电压(应变片的电阻为120Ω)。

解:

3.1电感式传感器有哪些种类?

它们的工作原理是什么?

答:

①种类:

自感式、涡流式、差动式、变压式、压磁式、感应同步器

②原理:

自感、互感、涡流、压磁

3.3试分析差动变压器相敏检测电路的工作原理。

答:

相敏检测电路原理是通过鉴别相位来辨别位移的方向,即差分变压器输出的调幅波经相敏检波后,便能输出既反映位移大小,又反映位移极性的测量信号。

经过相敏检波电路,正位移输出正电压,负位移输出负电压,电压值的大小表明位移的大小,电压的正负表明位移的方向。

3.4分析电感传感器出现非线性的原因,并说明如何改善?

答:

①原因是改变了空气隙长度

②改善方法是让初始空气隙距离尽量小,同时灵敏度的非线性也将增加,这样的话最好使用差动式传感器,

其灵敏度增加非线性减少。

3.5图F1-7所示一简单电感式传感器。

尺寸已示于图中。

磁路取为中心磁路,不记漏磁,设铁心及衔铁的相对磁导率为104,空气的相对磁导率为1,真空的磁导率为4π×10-7H﹒m-1,试计算气隙长度为零及为2mm时的电感量。

图中所注尺寸单位均为mm.

解:

3.6今有一种电涡流式位移传感器。

其输出为频率。

特性方程形式为

今知其中

MHz及一组标定数据如下:

位移x(mm)

0.3

0.5

1.0

1.5

2.0

3.0

4.0

5.0

6.0

输出f(MHz)

2.523

2.502

2.461

2.432

2.410

2.380

2.362

2.351

2.343

试求该传感器的工作特性方程及符合度(利用曲线化直线的拟合方法,并用最小二乘法作直线拟合)。

解:

又有

重写表格如下:

x

0.3

0.5

1.0

1.5

2.0

3.0

4.0

5.0

6.0

f

2.523

2.502

2.461

2.432

2.410

2.380

2.362

2.351

2.343

y

-1.66

-1.78

-2.06

-2.31

-2.56

-3.06

-3.54

-4.02

-4.61

最小二乘法做直线拟和:

3.7简述电涡流效应及构成电涡流传感器的可能的应用场合。

答:

应用场合有低频透射涡流测厚仪,探伤,描述转轴运动轨迹轨迹仪。

3.8简述压磁效应,并与应变效应进行比较。

答:

①压磁效应:

某些铁磁物质在外界机械力的作用下,其内部产生机械应力,从而引起磁导率的改变的现象。

只有在一定条件下压磁效应才有单位特性,但不是线性关系。

②应变效应:

导体产生机械变形时,它的电阻值相应发生变化。

在电阻丝拉伸比例极限内,电阻的相对变化与应变成正比。

4.2根据电容传感器的工作原理说明它的分类,电容传感器能够测量哪些物理参量?

答:

原理:

由物理学知,两个平行金属极板组成的电容器。

如果不考虑其边缘效应,其电容为C=εS/D式中ε为两个极板间介质的介电常数,S为两个极板对有效面积,D为两个极板间的距离。

由此式知,改变电容C的方法有三:

其一为改变介质的介电常数;其二为改变形成电容的有效面积;其三为改变各极板间的距离,而得到的电参数的输出为电容值的增量这就组成了电容式传感器。

类型:

变极距型电容传感器、变面积型电容传感器、变介电常数型电容传感器。

电容传感器可用来测量直线位移、角位移、振动振幅。

尤其适合测温、高频振动振幅、精密轴系回转精度、加速度等机械量。

还可用来测量压力、差压力、液位、料面、粮食中的水分含量、非金属材料的涂层、油膜厚度、测量电介质的湿度、密度、厚度等

4.4总结电容式传感器的优缺点,主要应用场合以及使用中应注意的问题。

答:

①优点:

a温度稳定性好

b结构简单、适应性强

c动响应好

②缺点:

a可以实现非接触测量,具有平均效应

b输出阻抗高、负载能力差

c寄生电容影响大

③输出特性非线性:

电容传感器作为频响宽、应用广、非接触测量的一种传感器,在位移、压力、厚度、物位、湿度、振动、转速、流量及成分分析的测量等方面得到了广泛的应用。

使用时要注意保护绝缘材料的的绝缘性能;消除和减小边缘效应;消除和减小寄生电容的影响;防止和减小外界的干扰。

4.7简述电容式传感器用差动脉冲调宽电路的工作原理及特点。

答:

工作原理:

假设传感器处于初始状态,即

且A点为高电平,即Ua=U;而B点为低电平,即Ub=0

差分脉冲调宽型电路的特点就在于它的线性变换特性。

5.1磁电式传感器与电感式传感器有哪些不同?

磁电式传感器主要用于测量哪些物理参数?

答:

磁电式传感器是通过磁电作用将被测量转换为电信号的一种传感器。

电感式传感器是利用线圈自感或互感的变化来测量的一种装置。

磁电式传感器具有频响宽、动态范围大的特点。

而电感式传感器存在交流零位信号,不宜于高频动态信号检测;其响应速度较慢,也不宜做快速动态测量。

磁电式传感器测量的物理参数有:

磁场、电流、位移、压力、振动、转速。

5.2霍尔元件能够测量哪些物理参数?

霍尔元件的不等位电势的概念是什么?

温度补偿的方法有哪几种?

答:

霍尔组件可测量磁场、电流、位移、压力、振动、转速等。

霍尔组件的不等位电势是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电势,可用输出的电压表示。

温度补偿方法:

a分流电阻法:

适用于恒流源供给控制电流的情况。

b电桥补偿法

6.1什么是压电效应?

压电效应有哪些种类?

压电传感器的结构和应用特点是什么?

能否用压电传感器测量静态压力?

答:

某些电介质在沿一定的方向受到外力的作用变形时,由于内部电极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。

晶体受力所产生的电荷量与外力的大小成正比。

这种现象称为正压电效应。

反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。

压电材料有:

石英晶体、一系列单晶硅、多晶陶瓷、有机高分子聚合材料

结构和应用特点:

在压电式传感器中,为了提高灵敏度,往往采用多片压电芯片构成一个压电组件。

其中最常用的是两片结构;根据两片压电芯片的连接关系,可分为串联和并联连接,常用的是并联连接,可以增大输出电荷,提高灵敏度。

使用时,两片压电芯片上必须有一定的预紧力,以保证压电组件在工作中始终受到压力作用,同时可消除两片压电芯片因接触不良而引起的非线性误差,保证输出信号与输入作用力间的线性关系,因此需要测量电路具有无限大的输入阻抗。

但实际上这是不可能的,所以压电传感器不宜作静态测量,只能在其上加交变力,电荷才能不断得到补充,并给测量电路一定的电流。

故压电传感器只能作动态测量。

6.2为什么压电传感器通常都用来测量动态或瞬态参量?

答:

如作用在压电组件上的力是静态力,则电荷会泄露,无法进行测量。

所以压电传感器通常都用来测量动态或瞬态参量。

6.3试比较石英晶体和压电陶瓷的压电效应。

答:

石英晶体整个晶体是中性的,受外力作用而变形时,没有体积变形压电效应,但它具有良好的厚度变形和长度变形压电效应。

压电陶瓷是一种多晶铁电体。

原始的压电陶瓷材料并不具有压电性,必须在一定温度下做极化处理,才能使其呈现出压电性。

所谓极化,就是以强电场使“电畴”规则排列,而电畴在极化电场除去后基本保持不变,留下了很强的剩余极化。

当极化后的铁电体受到外力作用时,其剩余极化强度将随之发生变化,从而使一定表面分别产生正负电荷。

在极化方向上压电效应最明显。

铁电体的参数也会随时间发生变化—老化,铁电体老化将使压电效应减弱。

6.4设计压电式传感器检测电路的基本考虑点是什么?

为什么?

答:

基本考虑点是如何更好的改变传感器的频率特性,以使传感器能用于更广泛的领域。

6.5在测量电路中,引入前置放大器有什么作用?

引入前置放大器作用:

一是放大压电元件的微弱电信号;二是把高阻抗输入变换为低阻抗输出。

7.1什么是光电效应?

答:

当用光照射物体时,物体受到一连串具有能量的光子的轰击,于是物体材料中的电子吸收光子能量而发生相应的电效应(如电阻率变化、发射电子或产生电动势等)。

这种现象称为光电效应。

7.2光纤损耗是如何产生的?

它对光纤传感器有哪些影响?

答:

①吸收性损耗:

吸收损耗与组成光纤的材料的中子受激和分子共振有关,当光的频率与分子的振动频率接近或相等时,会发生共振,并大量吸收光能量,引起能量损耗。

②散射性损耗:

是由于材料密度的微观变化、成分起伏,以及在制造过程中产生的结构上的不均匀性或缺陷引起。

一部分光就会散射到各个方向去,不能传输到终点,从而造成散射性损耗。

③辐射性损耗:

当光纤受到具有一定曲率半径的弯曲时,就会产生辐射磁粒。

a弯曲半径比光纤直径大很多的弯曲

b微弯曲:

当把光纤组合成光缆时,可能使光纤的轴线产生随机性的微曲。

7.3光导纤维为什么能够导光?

光导纤维有哪些优点?

光纤式传感器中光纤的主要优点有哪些?

答:

光导纤维工作的基础是光的全内反射,当射入的光线的入射角大于纤维包层间的临界角时,就会在光纤的接口上产生全内反射,并在光纤内部以后的角度反复逐次反射,直至传递到另一端面。

优点:

a具有优良的传旋光性能,传导损耗小

b频带宽,可进行超高速测量,灵敏度和线性度好

c能在恶劣的环境下工作,能进行远距离信号的传送

功能型光纤传感器其光纤不仅作为光传播的波导,而且具有测量的功能。

它可以利用外界物理因素改变光纤中光的强度、相位、偏振态或波长,从而对外界因素进行测量和数据传输。

7.4论述CCD的工作原理。

答:

CCD是一种半导体器件,在N型或P型硅衬底上生长一层很薄的SiO2,再在SiO2薄层上依次序沉积金属电极,这种规则排列的MOS电容数组再加上两端的输入及输出二极管就构成了CCD芯片

CCD可以把光信号转换成电脉冲信号。

每一个脉冲只反映一个光敏元的受光情况,脉冲幅度的高低反映该光敏元受光的强弱,输出脉冲的顺序可以反映光敏元的位置,这就起到图像传感器的作用。

8.1热电阻传感器主要分为几种类型?

它们应用在什么不同场合?

答:

热电阻传感器分为以下几种类型:

①铂电阻传感器:

特点是精度高、稳定性好、性能可靠。

主要作为标准电阻温度计使用,也常被用在工业测量中。

此外,还被广泛地应用于温度的基准、标准的传递,是目前测温复现性最好的一种。

②铜电阻传感器:

价钱较铂金属便宜。

在测温范围比较小的情况下,有很好的稳定性。

温度系数比较大,电阻值与温度之间接近线性关系。

材料容易提纯,价格便宜。

不足之处是测量精度较铂电阻稍低、电阻率小。

③铁电阻和镍电阻:

铁和镍两种金属的电阻温度系数较高、电阻率较大,故可作成体积小、灵敏度高的电阻温度计,其缺点是容易氧化,化学稳定性差,不易提纯,复制性差,而且电阻值与温度的线性关系差。

目前应用不多

8.2什么叫热电动势、接触电动势和温差电动势?

说明热电偶测温原理及其工作定律的应用。

分析热电偶测温的误差因素,并说明减小误差的方法。

答:

①热电动势:

两种不同材料的导体(或半导体)A、B串接成一个闭合回路,并使两个结点处于不同的温度下,那么回路中就会存在热电势。

有电流产生相应的热电势称为温差电势或塞贝克电势,通称热电势。

②接触电动势:

接触电势是由两种不同导体的自由电子,其密度不同而在接触处形成的热电势。

它的大小取决于两导体的性质及接触点的温度,而与导体的形状和尺寸无关。

③温差电动势:

是在同一根导体中,由于两端温度不同而产生的一种电势。

④热电偶测温原理:

热电偶的测温原理基于物理的"热电效应"。

所谓热电效应,就是当不同材料的导体组成一个闭合回路时,若两个结点的温度不同,那么在回路中将会产生电动势的现象。

两点间的温差越大,产生的电动势就越大。

引入适当的测量电路测量电动势的大小,就可测得温度的大小。

⑤热电偶三定律:

a中间导体定律:

热电偶测温时,若在回路中插入中间导体,只要中间导体两端的温度相同,则对热电偶回路总的热电势不产生影响。

在用热电偶测温时,连接导线及显示一起等均可看成中间导体。

b中间温度定律:

任何两种均匀材料组成的热电偶,热端为T,冷端为T时的热电势等于该热电偶热端为T冷端为Tn时的热电势与同一热电偶热端为Tn,冷端为T0时热电势的代数和。

应用:

对热电偶冷端不为0度时,可用中间温度定律加以修正。

热电偶的长度不够时,可根据中间温度定律选用适当的补偿线路。

c参考电极定律:

如果A、B两种导体(热电极)分别与第三种导体C(参考电极)组成的热电偶在结点温度为(T,T0)时分别为

,那么受相同温度下,又A、B两热电极配对后的热电势为

实用价值:

可大大简化热电偶的选配工作。

在实际工作中,只要获得有关热电极与标准铂电极配对的热电势,那么由这两种热电极配对组成热电偶的热电势便可由上式求得,而不需逐个进行测定。

⑥误差因素:

参考端温度受周围环境的影响

减小误差的措施有:

a0oC恒温法

b计算修正法(冷端温度修正法)

c仪表机械零点调整法

d热电偶补偿法

e电桥补偿法

f冷端延长线法

8.4试比较电阻温度计与热电偶温度计的异同点

答:

电阻温度计利用电阻随温度变化的特性来测量温度。

热电偶温度计是根据热电效应原理设计而成的。

前者将温度转换为电阻值的大小,后者将温度转换为电势大小。

相同点:

都是测温传感器,精度及性能都与传感器材料特性有关。

8.5什么是测温用的平衡电桥、不平衡电桥和自动平衡电桥,各有什么特点?

答:

在不平衡电桥中,"检流计"改称为"电流计",其作用而不是检查有无电流而是测量电流的大小。

可见,不平衡电桥和平衡电桥的测量原理有原则上的区别。

利用电桥除可精确测量电阻外,还可测量一些非电学量。

例如,为了测量温度变化,只需用一种"热敏组件"把它转化为电阻的变化,然后用电桥测量。

不平衡电桥往往用于测量非电学量,此外还可用于自动控制和远距离联动机构中。

8.6试解释负电阻温度系数热敏电阻的伏安特性,并说明其用途。

答:

伏安特性表征热敏电阻在恒温介质下流过的电流I与其上电压降U之间的关系。

当电流很小时不足以引起自身发热,阻值保持恒定,电压降与电流间符合欧姆定律。

当电流I>Is时,随着电流增加,功耗增大,产生自热,阻值随电流增加而减小,电压降增加速度逐渐减慢,因而出现非线性的正阻区ab。

电流增大到Is时,电压降达到最大值Um。

此后,电流继续增大时,自热更为强烈,由于热敏电阻的电阻温度系数大,阻值随电流增加而减小的速度大于电压降增加的速度,于是就出现负阻区bc段。

研究伏安特性,有助于正确选择热敏电阻的工作状态。

对于测温、控温和温度补偿,应工作于伏安特性的线性区,这样就可以忽略自热的影响,使电阻值仅取决于被测温度。

对于利用热敏电阻的耗散

原理工作的场合,例如测量风速、流量、真空等,则应工作于伏安特性的负阻区。

8.7使用K型热电偶,基准接点为0℃、测量接点为30℃和900℃时,温差电动势分别为1.203mV和37.326mV。

当基准接点为30℃,测温接点为900℃时的温差电动势为多少?

答:

现t2=900℃,t1=30℃,基准接点温度为30℃,

测温接点温度为900℃时的温差电动势设为E,

则37.326=1.203+E,所以E=36.123mV。

8.80℃时铂金热电阻的阻值为100Ω。

按下图所示进行温度测量。

R1=100Ω,R2=200Ω,R3=300Ω时桥路达到平衡。

此时温度为多少?

假设铂金电阻的温度系数为0.003851℃-1,电阻与温度成线性关系,另外导线的电阻可忽略不计。

答:

电桥平衡的条件为Rt*R2=R1*R3,所以

另一方面,t(℃)时的电阻阻值表示式为

Rt=100(1+0.003851*t)Rt=150

所以t=129.8℃

8.9将一灵敏度为0.08mV/℃的热电偶与电压表相连接,电压表接线端是50℃,若电位计上读数是60mV,热电偶的热端温度是什么?

解:

=800℃

8.100℃时的电阻为100Ω的铂热电阻。

300℃时的阻值按下面两种方法计算,其结果之差换算成温度差是多少?

电阻用温度的一次方程表示,RT=R0(1+At+Bt2)式中B=0,A=0.003851℃-1;B=-0.0000059。

(此时100℃时的电阻值为138.51Ω)电阻值与温度为二次函数关系。

用一次方程近似时,温度误差为多少?

答:

(1)RT=100(1+0.003851*t),以t=300℃代入,得RT=215.53Ω。

(2)RT=R0(1+At+Bt2)式中以t=300℃代入,得RT=212.05Ω。

(3)同

(2),算得t=310℃时电阻值为215.61Ω,

即温度上升10℃电阻增加3.56Ω。

因此,由(215.53-212.05)/0.356=9.8算得误差为9.8℃。

8.11某热敏电阻0℃时电阻为30kΩ,若用来测量100℃物体的温度,其电阻为多少?

设热敏电阻的系数B为3450K。

答:

式中以R0=3*104,B=3450,T=373.15和T0=273.15代入得RT=1.017kΩ。

10.1什么是智能传感器?

答:

智能传感器集信息采集,信息的记忆、辨别、存储、处理于一体,是一种将普通传感器与微处理器一体化,兼有检测和信息处理功能的新型传感器,具有一定的自适应能力。

10.2SMART传感器应有哪些主要功能?

有哪些优点?

答:

①功能分为:

a自补偿功能:

如非线性、温度误差响应时间等的补偿

b自诊断功能:

如在接通电源时自检

c微处理器和基本传感器之间具有双向通信功能,构成一死循环工作系统

d信息存储和记忆功能

e数字量输出和显示

②优点有:

a精度高,可通过软件来修正非线性,补偿温度等系统误差,还可补偿随机误差

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2