XSZY50型塑料机注塑成型机液压系统设计.docx

上传人:b****7 文档编号:16028878 上传时间:2023-07-10 格式:DOCX 页数:38 大小:462.14KB
下载 相关 举报
XSZY50型塑料机注塑成型机液压系统设计.docx_第1页
第1页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第2页
第2页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第3页
第3页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第4页
第4页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第5页
第5页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第6页
第6页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第7页
第7页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第8页
第8页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第9页
第9页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第10页
第10页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第11页
第11页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第12页
第12页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第13页
第13页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第14页
第14页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第15页
第15页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第16页
第16页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第17页
第17页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第18页
第18页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第19页
第19页 / 共38页
XSZY50型塑料机注塑成型机液压系统设计.docx_第20页
第20页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

XSZY50型塑料机注塑成型机液压系统设计.docx

《XSZY50型塑料机注塑成型机液压系统设计.docx》由会员分享,可在线阅读,更多相关《XSZY50型塑料机注塑成型机液压系统设计.docx(38页珍藏版)》请在冰点文库上搜索。

XSZY50型塑料机注塑成型机液压系统设计.docx

XSZY50型塑料机注塑成型机液压系统设计

第一章绪论

1.1注塑机的发展简史及国内外现状

注射成型是加工热塑性高分子材料的主要方法之一。

这种方法能制得外形复杂、尺寸精确和带有金属嵌件的制品,对各种聚合物加工的适应性强,易于实现全自动化生产。

目前世界上80%的工程塑料制品采用注射成型加工。

注射成型加工的主要设备是注塑机。

八十年代以后,随着工程塑料的迅速发展和其应用领域的不断开拓,注塑机正朝着高速、高效、低能耗和高自动化的方向发展。

图1注塑机

注塑机的发展水平及趋势:

随着塑胶制品多样化市场需求越来越大,注塑机设备的升级换代也越来越快。

早期的注塑机都是全液压式,由于环保和节能的需要,以及伺服电机的成熟应用和价格的大幅度下降,随着塑胶制品多样化市场需求越来越大,注塑机设备的升级换代也越来越快。

早期的注塑机都是全液压式,由于环保和节能的需要,以及伺服电机的成熟应用和价格的大幅度下降,近年来全电动式的精密注塑机越来越多。

随着世界各国在环保,如能耗、噪音、泄漏等控制方面日益严格的要求,节能已完成为注塑机电液系统的研究重点,针对阀控电液系统有较大能量损失的不足,德、日等国发展了应用变量泵和电液比例阀结合的负载感应型的注塑机电液控制系统。

为进一步降低能耗,减少噪音,最新一代的注塑机是用转速可调的电动机驱动液压泵为动力源,在保压、冷却及空转工况保持很低转速,以达到节能、降噪的目的,其工作原理简述如下:

利用注塑机同步信号及电气控制系统,根据注塑成型的工艺要求,将电液比例控制系统,模拟成负载跟踪控制系统,使油泵电机的转速与注塑机工作所需液压的流量与压力乘积成正比,将传统的定量泵改造成变频变量泵,从而使溢流阀的回油流量降到最小,无高压节流能量损失,进而将传统有高压节流的“耗能型”注塑机升级为无高压节流的“节能型”注塑机,节能型注塑机除了节能功能外,依据其节能原理,还具有附加系列的优点:

1、减轻开、锁模冲击,延长机械和模具使用寿命;

2、延长油路系统(密封组件等)使用寿命,减少维修次数、节省维护;

3、降低噪音、改善工作环境;

4、系统油温大幅降低,冷却用水量可节省30;

5、对电机具有过压、过流、缺相等多种保护;

6、注塑机原有的控制方式及油路不变;

7、将注塑机改造升级为“节能型”注塑机,其投资(主要是变频器)应该在一年内可通过节约的电费或油费收回。

总之,开发“节能型”注塑机理论可行,投资小、效益明显,或许在不久的将来,变频节能型注塑机会成为注塑机制造业的新卖点。

国内发展水平及方向:

目前中国塑料机械产品主要集中在通用的中小型设备上,技术含量低,20世纪80-90年代的低档产品供大于求,机械制造能力过剩,企业效益下降。

有的品种特别是超精大型高档产品还是空白,仍需进口。

据2001年统计,中国进口塑料机械使用外汇11.2亿美元,而出口塑料机械创汇只有1.3亿美元,进口远大于出口。

中国加入世界经贸组织(WTO)后,国外的机械制造业加速对华转移,世界一些知名的塑料机械企业,如德国德马克、克虏伯、巴登菲尔,日本住友重工等公司先后“进驻”中国,有的还进一步设立了技术中心。

国外塑料机械制造商的进入给中国塑料机械行业带来了发展活力,同时也使中国塑料机械制造企业充满了机遇与挑战。

1.2课题设计的目的和意义

注塑机是一种专用的塑料成型机械,它利用塑料的热塑性,经加热融化后,加以高的压力使其快速流入模腔,经一段时间的保压和冷却,成为各种形状的塑料制品本课题研究的重点是设计一台注塑机的液压系统。

要完成课题所达到的目的,就要确定液压系统方案,这是本课题的重点,也是问题存在之处。

在注塑机液压系统方案确定后,怎样选择液压元件,以及集中阀的设计就是可能出现的问题。

问题解决的办法:

在熟悉各液压阀及液压回路的作用后,我们就可以逐步确定系统方案了。

例如:

在设计过程中为了灵活的控制压力控制注射压力和保压压力,注射系统采用两级压力控制。

而对于集成阀设计,则只能多查阅相关资料,仿照设计。

第二章注塑机的工作原理及机构组成

2.1注塑机的工作原理

注塑成型机简称注塑机。

注塑成型是利用塑料的热物理性质,把物料从料斗加入料筒中,料筒外由加热圈加热,使物料熔融,在料筒内装有在外动力马达作用下驱动旋转的螺杆,物料在螺杆的作用下,沿着螺槽向前输送并压实,物料在外加热和螺杆剪切的双重作用下逐渐地塑化,熔融和均化,当螺杆旋转时,物料在螺槽摩擦力及剪切力的作用下,把已熔融的物料推到螺杆的头部,与此同时,螺杆在物料的反作用下后退,使螺杆头部形成储料空间,完成塑化过程,然后,螺杆在注射油缸的活塞推力的作用下,以高速、高压,将储料室内的熔融料通过喷嘴注射到模具的型腔中,型腔中的熔料经过保压、冷却、固化定型后,模具在合模机构的作用下,开启模具,并通过顶出装置把定型好的制品从模具顶出落下。

闭模,注射座前进注射保压冷却启模制品顶出退回塑化塑化退回固定塑化。

2.2注塑机的分类

按合模部件与注射部件配置的型式有卧式、立式、角式三种

卧式注塑机:

卧式注塑机是最常用的类型。

其特点是注射总成的中心线与合模总成的中心线同心或一致,并平行于安装地面。

它的优点是重心低、工作平稳、模具安装、操作及维修均较方便,模具开档大,占用空间高度小;但占地面积大,大、中、小型机均有广泛应用。

立式注塑机:

其特点是合模装置与注射装置的轴线呈一线排列而且与地面垂直。

具有占地面积小,模具装拆方便,嵌件安装容易,自料斗落入物料能较均匀地进行塑化,易实现自动化及多台机自动线管理等优点。

缺点是顶出制品不易自动脱落,常需人工或其它方法取出,不易实现全自动化操作和大型制品注射;机身高,加料、维修不便。

角式注塑机:

注射装置和合模装置的轴线互成垂直排列。

根据注射总成中心线与安装基面的相对位置有卧立式、立卧式、平卧式之分:

①卧立式,注射总成线与基面平行,而合模总成中心线与基面垂直;②立卧式,注射总成中心线与基面垂直,而合模总成中心线与基面平行。

角式注射机的优点是兼备有卧式与立式注射机的优点,特别适用于开设侧浇口非对称几何形状制品的模具。

2.3注塑机的组成结构分析

注塑机根据注射成型工艺要求是一个机电一体化很强的机种,主要由注射部件、合模部件、机身、液压系统、加热系统、控制系统、加料装置等组成。

注塑机注射部件塑化部件螺杆料筒螺杆头喷嘴注射座注射油缸座移油缸液压马达合模部件合模装置调模装置顶出装置机身液压系统泵、液压马达、阀蓄能器、冷却器、管路等油路控制加热系统冷却系统控制系统动作程控料筒温度控制液压泵电机控制故障检测报警控制安全保护加料装置。

目前,常见的注塑装置有单缸形式和双缸形式,有的厂的注塑机都是双缸形式的,并且都是通过液压马达直接驱动螺杆注塑。

因不同的厂家、不同型号的机台其组成也不完全相同,下面就对用的机台作具体分析。

立式机和卧式机注塑装置工作原理是:

预塑时,在塑化部件中的螺杆通过液压马达驱动主轴旋转,主轴一端与螺杆键连接,另一端与液压马达键连接,螺杆旋转时,物料塑化并将塑化好的熔料推到料筒前端的储料室中,与此同时,螺杆在物料的反作用下后退,并通过推力轴承使推力座后退,通过螺母拉动活塞杆直线后退,完成计量,注射时,注射油缸的杆腔进油通过轴承推动活塞杆完成动作,活塞的杆腔进油推动活塞杆及螺杆完成注射动作。

螺杆式塑化部件的工作原理:

预塑时,螺杆旋转,将从料口落入螺槽中的物料连续地向前推进,加热圈通过料筒壁把热量传递给螺槽中的物料,固体物料在外加热和螺杆旋转剪切双重作用下,并经过螺杆各功能段的热历程,达到塑化和熔融,熔料推开止逆环,经过螺杆头的周围通道流入螺杆的前端,并产生背压,推动螺杆后移完成熔料的计量,在注射时,螺杆起柱塞的作用,在油缸作用下,迅速前移,将储料室中的熔体通过喷嘴注入模具。

螺杆式塑化部件一般具有如下特点:

1、螺杆具有塑化和注射两种功能;

2、螺杆在塑化时,仅作预塑用;

3、塑料在塑化过程中,所经过的热历程要比挤出长;

4、螺杆在塑化和注射时,均要发生轴向位移,同时螺杆又处于时转时停的间歇式工作状态,因此形成了螺杆塑化过程的非稳定性。

2.3.1螺杆:

螺杆是塑化部件中的关键部件,和塑料直接接触,塑料通过螺槽的有效长度,经过很长的热历程,要经过3态(玻璃态、黏弹态、黏流态)的转变,螺杆各功能段的长度、几何形状、几何参数将直接影响塑料的输送效率和塑化质量,将最终影响注射成型周期和制品质量。

与挤出螺杆相比,注塑螺杆具有以下特点:

1、注射螺杆的长径比和压缩比比较小;

2、注射螺杆均化段的螺槽较深;

3、注射螺杆的加料段较长,而均化段较短;

4、注射螺杆的头部结构,具有特殊形式。

注射螺杆工作时,塑化能力和熔体温度将随螺杆的轴向位移而改变。

一、螺杆的分类:

注塑螺杆按其对塑料的适应性,可分为通用螺杆和特殊螺杆,通用螺杆又称常规螺杆,可加工大部分具有低、中黏度的热塑性塑料,结晶型和非结晶型的民用塑料和工程塑料,是螺杆最基本的形式,与其相应的还有特殊螺杆,是用来加工用普通螺杆难以加工的塑料;按螺杆结构及其几何形状特征,可分为常规螺杆和新型螺杆,常规螺杆又称为三段式螺杆,是螺杆的基本形式,新型螺杆形式则有很多种,如分离型螺杆、分流型螺杆、波状螺杆、无计量段螺杆等。

常规螺杆其螺纹有效长度通常分为加料段(输送段)、压缩段(塑化段)、计量段(均化段),根据塑料性质不同,可分为渐变型、突变型和通用型螺杆。

渐变型螺杆:

压缩段较长,塑化时能量转换缓和,多用于PVC等热稳定性差的塑料。

突变型螺杆:

压缩段较短,塑化时能量转换较剧烈,多用于聚烯烃、PA等结晶型塑料。

通用型螺杆:

适应性比较强的通用型螺杆,可适应多种塑料的加工,避免更换螺杆频繁,有利于提高生产效率。

常规螺杆名段的长度如下:

螺杆类型加料段(L1)压缩段(L2)均化段(L3)

渐变型25~30%50%15~20%

突变型65~70%15~5%20~25%

通用型45~50%20~30%20~30%

二、螺杆的基本参数

螺杆的基本结构主要由有效螺纹长度L和尾部的连接部分组成。

ds—螺杆外径,螺杆直径直接影响塑化能力的大小,也就直接影响到理论注射容积的大小,因此,理论注射容积大的注塑机其螺杆直径也大。

L/ds—螺杆长径比。

L是螺杆螺纹部分的有效长度,螺杆长径比越大,说明螺纹长度越长,直接影响到物料在螺杆中的热历程,影响吸收能量的能力,而能量来源有两部分:

一部分是料筒外部加热圈传给的,另一部分是螺杆转动时产生的摩擦热和剪切热,由外部机械能转化的,因此,L/ds直接影响到物料的熔化效果和熔体质量,但是如果L/ds太大,则传递扭矩加大,能量消耗增加。

L1—加料段长度。

加料段又称输送段或进料段,为提高输送能力,螺槽表面一定要光洁,L1的长度应保证物料有足够的输送长度,因为过短的L1会导致物料过早的熔融,从而难以保证稳定压力的输送条件,也就难以保证螺杆以后各段的塑化质量和塑化能力。

塑料在其自身重力作用下从料斗中滑进螺槽,螺杆旋转时,在料筒与螺槽组成的各推力面摩擦力的作用下,物料被压缩成密集的固体塞螺母,沿着螺纹方向做相对运动,在此段,塑料为固体状态,即玻璃态。

h1—加料段的螺槽深度。

h1深,则容纳物料多,提高了供料量和塑化能力,但会影响物料塑化效果及螺杆根部的剪切强度,一般h1≈(0.12~0.16)ds。

L3—熔融段长度。

熔融段又称均化段或计量段,熔体在L3段的螺槽中得到进一步的均化,温度均匀,组分均匀,形成较好的熔体质量,L3长度有助于熔体在螺槽中的波动,有稳定压力的作用,使物料以均匀的料量从螺杆头部挤出,所以又称计量段。

L3短时,有助于提高螺杆的塑化能力,一般L3=(4~5)ds。

h3—熔融段螺槽深度,h3小,螺槽浅,提高了塑料熔体的塑化效果,有利于熔体的均化,但h3过小会导致剪切速率过高,以及剪切热过大,引起分子链的降解,影响熔体质量,;反之,如果h3过大,由于预塑时,螺杆背压产生的回流作用增强,会降低塑化能力。

L2—塑化段(压缩段)螺纹长度。

物料在此锥形空间内不断地受到压缩、剪切和混炼作用,物料从L2段入点开始,熔池不断地加大,到出点处熔池已占满全螺槽,物料完成从玻璃态经过黏弹态向黏流态的转变,即此段,塑料是处于颗粒与熔融体的共存状态。

L2的长度会影响物料从玻璃态到黏流态的转化历程,太短会来不及转化,固料堵在L2段的末端形成很高的压力、扭矩或轴向力;太长则会增加螺杆的扭矩和不必要的消耗,一般L2=(6~8)ds。

对于结晶型的塑料,物料熔点明显,熔融范围窄,L2可短些,一般为(3~4)ds,对于热敏性塑料,此段可长些。

S—螺距,其大小影响螺旋角,从而影响螺槽的输送效率,一般S≈ds。

ε—压缩比。

ε=h1/h3,即加料段螺槽深度h1与熔融段螺槽深度h3之比。

ε大,会增强剪切效果,但会减弱塑化能力,一般来讲,ε稍小一点为好,以有利于提高塑化能力和增加对物料的适应性,对于结晶型塑料,压缩比一般取2.6~3.0。

对于低黏度热稳定性塑料,可选用高压缩比;而高黏度热敏性塑料,应选用低压缩比。

三、螺杆头

在注射螺杆中,螺杆头的作用是:

预塑时,能将塑化好的熔体放流到储料室中,而在高压注射时,又能有效地封闭螺杆头前部的熔体,防止倒流。

螺杆头分为两大类,带止逆环的和不带止逆环的,对于带止逆环的,预塑时,螺杆均化段的熔体将止逆环推开,通过与螺杆头形成的间隙,流入储料室中,注射时,螺杆头部的熔体压力形成推力,将止逆环退回流道封堵,防止回流。

螺杆头部开有斜槽,适用于中、低粘度的塑料

对于有些高黏度物料如PMMA、PC、AC或者热稳定性差的物料PVC等,为减少剪切作用和物料的滞留时间,可不用止逆环,但这样的注射时会产生反流,延长保压时间。

对螺杆头的要求:

螺杆头要灵活、光洁;

止逆环与料筒配合间隙要适宜,即要防止熔体回流,又要灵活;

既有足够的流通截面,又要保证止逆环端面有回程力,使在注射时快速封闭;

结构上应拆装方便,便于清洗;

螺杆头的螺纹与螺杆的螺纹方向相反,防止预塑时螺杆头松脱。

2.3.2料筒

料筒的结构:

料筒是塑化部件的重要零件,内装螺杆外装加热圈,承受复合应力和热应力的作用。

螺孔3装热电偶,要与热电偶紧密地接触,防止虚浮,否则会影响温度测量精度。

加料口:

加料口的结构形式直接影响进料效果和塑化部件的吃料能力,注塑机大多数靠料斗中物料的自重加料。

料筒的壁厚:

料筒壁厚要求有足够的强度和刚度,因为料筒内要承受熔料和气体压力,且料筒长径比很大,料筒要求有足够的热容量,所以料筒壁要有一定的厚度,否则难以保证温度的稳定性;但如果太厚,料筒笨重,浪费材料,热惯性大,升温慢,温度调节有较大的滞后现象。

料筒间隙:

料筒间隙指料筒内壁与螺杆外径的单面间隙,此间隙太大,塑化能力降低,注射回泄量增加,注射时间延长,在此过程中引起物料部分降解;如果太小,热膨胀作用使螺杆与料筒摩擦加剧,能耗加大,甚至会卡死,此间隙Δ=(0.002~0.005)ds。

料筒的加热与冷却:

注塑机料筒加热方式有电阻电热、陶瓷加热、铸铝加热,应根据使用场合和加工物料合理设置,常用的有电阻加热和陶瓷加热,为符合注塑工艺要求,料筒要分段控制,小型机3段,大型机一般5段。

冷却是指对加料口处进行冷却,因加料口处若温度过高,固料会在加料口处“架桥”,堵塞料口,从而影响加料段的输送效率,故在此处设置冷却水套对其进行冷却。

我厂是通过冷却循环水对加料口进行冷却的。

2.3.3喷嘴

一、喷嘴的功能:

喷嘴是连接塑化装置与模具流道的重要部件,喷嘴有多种功能:

预塑时,建立背压,驱除气体,防止熔体流涎,提高塑化能力和计量精度;

注射时,与模具主浇套形成接触压力,保持喷嘴与浇套良好接触,形成密闭流道,防止塑料熔体在高压下外溢;

注射时,建立熔体压力,提高剪切应力,并将压力头转变成速度头,提高剪切速度和温升,加强混炼效果和均化作用;

改变喷嘴结构使之与模具和塑化装置相匹配,组成新的流道型式或注塑系统;

喷嘴还承担着调温、保温和断料的功能;

减小熔体在进出口的粘弹效应和涡流损失,以稳定其流动;

保压时,便于向模具制品中补料,而冷却定型时增加回流阻力,减小或防止模腔中熔体向回流。

二、喷嘴的基本形式

喷嘴可分为直通式喷嘴、锁闭式喷嘴、热流道喷嘴和多流道喷嘴,现阶段我厂用的都是直通式喷嘴。

直通式喷嘴是应用较普遍的喷嘴,其特点是喷嘴球面直接与模具主浇套球面接触,喷嘴的圆弧半径和流道比模具要小,注射时,高压熔体直接经模具的浇道系统充入模腔,速度快、压力损失小,制造和安装均较方便。

锁闭式喷嘴主要是解决直通式喷嘴的流涎问题,适用于低黏度聚合物(如PA)的加工。

在预塑时能关闭喷嘴流道,防止熔体流涎现象,而当注射时又能在注射压力的作用下开启,使熔体注入模腔。

2.3.4注射油缸

其工作原理是:

注射油缸进油时,活塞带动活塞杆及其置于推力座内的轴承,推动螺杆前进或后退。

通过活塞杆头部的螺母,可以对两个平行活塞杆的轴向位置以及注射螺杆的轴向位置进行同步调整。

一、推力座

注射时,推力座通过推力轴推动螺杆进行注射;而预塑时,通过油马达驱动推力轴带动螺杆旋转实现预塑。

二、座移油缸

当座移油缸进油时,实现注射座的前进或后退动作,并保证注塑喷嘴与模具主浇套圆弧面紧密地接触,产生能封闭熔体的注射座压力。

三、对注射部件精度要求

装配后,整体注射部件要置于机架上,必须保证喷嘴与模具主浇套紧密地接合,以防溢料,要求使注射部件的中心线与其合模部件的中心线同心;为了保证注射螺杆与料筒内孔的配合精度,必须保证两个注射油缸孔与料筒定位中心孔的平行度与中心线的对称度;对卧式机来讲,座移油缸两个导向孔的平行度和对其中心的对称度也必须保证,对立式机则必须保证两个座移油缸孔与料筒定位中心孔的平行度与中心线的对称度。

影响上述位置精度的因素是相关联部件孔与轴的尺寸精度、几何精度、制造精度与装配精度。

第三章工况分析

3.1注塑成型动作过程

大型塑料注射机目前都是全液压控制。

其基本工作原理是:

粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。

3.2液压传动系统主要传动动作

所设计的液压系统,传动动作的完成,主要靠合模液压缸、注射液压缸、注射座移动缸和一个液压马达作为主要传动元件。

具体的动作循环过程见下图:

图2注塑机工作循环图

在合模时,合模缸先驱动动模板慢速启动,然后快速前移,接近定模板时转为低压慢速前移,在低速合模确认模具无异物存在后转为高压合模(锁模)。

3.3注射机液压系统的设计要求

合模运动要平稳,两片模具闭合时不应有冲击;

当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。

注射后,注射机构应保持注射压力,使塑料充满型腔;

预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力;

为保证安全生产,系统应设有安全联锁装置。

3.4液压系统设计参数

液压系统设计参数:

螺杆直径d=φ20mm

螺杆行程s1=100mm

最大注射压力p=68Mpa

注射速度vW=0.07m/s

螺杆转速n=60r/min

螺杆驱动功率PM=3KW

注射座最大推力Fz=1×104N

注射座行程s2=100mm

注射座前进速度vz1=0.05m/s

注射座后退速度vz2=0.06m/s

最大合模力(锁模力)Fh=70×104N

开模力Fk=4.9×104N

动模板(合模缸)最大行程s3=150mm

快速合模速度vhG=0.1m/s

慢速合模速度vhm=0.02m/s

快速开模速度vkG=0.13m/s

慢速开模速度vkm=0.03m/s

注射速度0.07m/s

第四章注塑成型机液压系统方案设计

SZ—50A型塑料注射成型机液压系统以多执行元件工作为主特点,它的动作循环为“合模缸合模—注射座缸前进—注射缸注射—保压—冷却—注射座缸后退—合模缸开模—顶出缸顶出制品—顶出缸后退”,在制品冷却的同时,液压马达带动螺杆旋转对颗粒状塑料预塑。

动作循环中不同工作阶段的速度、压力要求相差较大。

这里采用了双联泵供油系统,速度高时采用双泵供油,速度低时采用一个泵供油,一个泵卸载;不同工作阶段的工作压力则由先导型溢流阀与多个远程调压、电磁滑阀组成的多级调压回路控制;注射、顶出、预塑的速度微调由节流阀或旁通型调速阀调节。

各执行元件的换向回路根据实际通过的流量采用电液换向阀或电磁换向阀。

多个执行元件的动作顺序由行程开关控制,这种控制方式机动灵活,系统较简单。

4.1能源装置(元件)方案设计

该液压系统在整个工作循环中需油量变化较大,另外,闭模和注射后又要求有较长时间的保压,所以选用双泵供油系统。

液压缸快速动作时,双泵同时供油,慢速动作或保压时由小泵单独供油,这样可减少功率损失,提高系统效率。

因为设备为固定设备,为便于油液冷却,系统选用开式回路,工作介质选用HL-N32普通液压油。

4.2调速回路(元件)方案设计

因对控制精度要求不高,系统采用开环控制,各执行元件的动作顺序由电气控制(各执行元件的换向阀选用电磁换向阀),如PLC控制。

因250g注塑机属小功率设备,故选用定量泵节流调速,系统压力选用弹簧加载式多级调压。

各执行元件的换向阀选用三位阀,因各执行元件是依次单独动作,各换向阀的中位机能选为“0”型。

系统不工作时,液压泵通过电磁溢流阀卸载。

4.3速度换接回路方案设计

速度换接回路的功能是使液压执行机构在一个工作循环中从一种运动速度变换到另一种运动速度,因而这个转换不仅包括液压执行元件快速到慢速的换接,而且也包括两个慢速之间的转换。

实现这些功能的回路应具有较高的速度换接平稳性。

4.4执行机构的确定

本机动作机构除螺杆的旋转选用液压马达外,合模、注射、注射座移动等均为双向运动,因前进负载力大于返程力,因此选用水平放置的单活塞杆液压缸直接驱动,螺杆则用液压马达驱动。

从给定的设计参数可知,锁模时所需的力最大,为900kN。

为此设置增压液压缸,得到锁模时的局部高压来保证锁模力。

4.5液压马达动作回路

螺杆不要求反转,所以液压马达单向旋转即可,由于其转速要求较高,而对速度平稳性无过高要求,故采用旁路节流调速方式。

4.6合模缸动作回路

合模缸要求其实现快速、慢速、锁模,开模动作。

其运动方向由电液换向阀直接控制。

快速运动时,需要有较大流量供给。

慢速合模只要有小流量供给即可。

锁模时,由增压缸供油。

4.7注射缸动作回路

注射缸运动速度也较快,平稳性要求不高,故也采用旁路节流调速方式。

由于预塑时有背压要求,在无杆腔出口处串联背压阀。

注射座移动缸,采用回油节流调速回路。

工艺要求其不工作时,处于浮动状态,故采用Y型中位机能的电磁换向阀

4.8安全联锁措施

本系统为保证安全生产,设置了安全门,在安全门下端装一个行程阀,用来控制合模缸的动作。

将行程阀串在控制合模缸换向的液动阀控制油路上,安全门没有关闭时,行程阀没被压下,液动换向阀不能进控制油,电液换向阀不能换向,合模缸也不能合模。

只有操作者离开,将安全门关闭,压下行程阀,合模缸才能合模,从而保障了人身安全。

4.9系统原理图

系统原理图如图2所示:

 

图3注塑机系统原理图

第五章注

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2