大体积混凝土施工方法及裂缝处理控制措施推荐.docx

上传人:b****7 文档编号:16292303 上传时间:2023-07-12 格式:DOCX 页数:10 大小:21.99KB
下载 相关 举报
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第1页
第1页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第2页
第2页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第3页
第3页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第4页
第4页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第5页
第5页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第6页
第6页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第7页
第7页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第8页
第8页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第9页
第9页 / 共10页
大体积混凝土施工方法及裂缝处理控制措施推荐.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

大体积混凝土施工方法及裂缝处理控制措施推荐.docx

《大体积混凝土施工方法及裂缝处理控制措施推荐.docx》由会员分享,可在线阅读,更多相关《大体积混凝土施工方法及裂缝处理控制措施推荐.docx(10页珍藏版)》请在冰点文库上搜索。

大体积混凝土施工方法及裂缝处理控制措施推荐.docx

大体积混凝土施工方法及裂缝处理控制措施推荐

大体积混凝土施工方法及裂缝处理控制措施[推荐]-

第一篇:

大体积混凝土施工方法及裂缝处理控制措施[推荐]

大体积混凝土施工方法及裂缝处理控制措施

随着社会的不断进步及我国各城市的基础建设的迅速发展,混凝土在工程建设中占有重要地位,现代建筑中经常涉及到大体积混凝土施工,如房屋建筑工程、公路工程、桥梁工程、市政工程、水利工程等。

尽管我们在施工中采取各种措施,小心谨慎,但裂缝几乎无所不在,仍然时有出现,并困扰着大批工程技术人员和管理人员,是一个迫切需要解决的技术难题。

所以必须从根本上加以分析、处理、控制,来保证施工的质量。

下面重点阐述大体积混凝土的施工工艺和技术要求以及施工裂缝的处理控制措施。

一、大体积混凝土的浇筑方法

目前,大体积混凝土浇筑的混凝土,绝大部分是采用泵送混凝土,避免了现场搅拌速度慢,跟不上的缺点。

混凝土在运输的过程中不得产生分层、离析现象,如有离析现象,必须在浇筑前进行第二次搅拌。

在大体积的混凝土在浇筑时,为了保证混凝土结构的整体性和施工的连续性,采用分层浇筑时,应保证在下层混凝土初凝前将上层的混凝土浇筑完毕。

分层浇筑主要有以下三种形式:

1.全面分层:

在整个模板内,将结构分成若干个厚度相等的浇筑层,浇筑区的面积即为基础平面面积。

浇筑混凝土时从短边开始,沿长边的方向进行浇筑,要求在逐层浇筑过程中,第二层混凝土必须要在第一层混凝土初凝前浇筑完毕。

由于全面分层浇筑,不需要进行分段,不需要支模分隔,而且一般情况下搅拌站的混凝土都能及时的跟上现成的浇筑,所以全面分层是目前大体积混凝土浇筑采用的最多的形式。

2.分段分层:

当采用全面分层方案时浇筑强度很大,现场混凝土搅拌机、运输和振捣设备均不能满足施工要求时,可采用分段分层浇筑的方案。

浇筑混凝土时结构沿长边方向分成若干段,浇筑工作从底层开始,当第一层混凝土浇筑一段长度后,便回头浇筑第二层,当第二层浇筑一段长度后,回头浇筑第三层,如此向前呈阶梯形推进。

分段分层方案适用于结构厚度不大,但面积或长度较大时采用。

3.斜面分层:

采用斜面分层方案时,混凝土一次浇筑到顶,由于混凝土自然流淌而形成斜面。

混凝土振捣工作从浇筑层下端开始逐渐上移。

斜面分层方案多用于长度较大的结构。

由于斜面分层的方案在施工过程中不易控制,因此在我们平时的施工中极少采用这种方案进行混凝土。

二、大体积混凝土的振捣

1.混凝土应采取振动棒振捣。

对于一次性混凝土浇筑体量较大的,可以同时采用多个振动棒,从不同的方位同时振捣。

坚决避免漏振、过振的现象发生。

2.在振动界限以前对混凝土进行二次振捣,排除混凝土因泌水在粗骨料、水平钢筋的下部生成的水分和空隙,提高混凝土与钢筋的握裹力,防止因混凝土沉落而出现的裂缝,减少内部微裂,增加混凝土的密实度,使混凝土的抗压强度提高,从而提高抗裂性。

三、大体积混凝土的养护

1.养护方法分为保湿法和保温法两种。

保湿法是常见的养护方法,浇水次数应能保持混凝土具有足够的湿润状态为准,养护初期,水泥水化作用进行较快。

2.养护时间。

为了确保新浇筑的混凝土有适宜的硬化条件,防止在早期由于干缩而产生裂缝,大体积混凝土浇筑完毕后,应在12h内加以覆盖和浇水。

普通硅酸盐水泥拌制的混凝土养护时间不得少于14d;矿渣水泥、火山灰水泥等拌制的混凝土养护时间不得少于21d。

对于有抗渗要求的大体积混凝土,其养护时间应提高一个档次,普通硅酸盐水泥拌制的混凝土养护时间不得少于21d;矿渣水泥、火山灰水泥等拌制的混凝土养护时间不得少于28d。

四、大体积混凝土裂缝的原因

近年来大量裂缝的出现,并非与荷载作用有直接关系,通过大量的调查与实测研究证明这种裂缝是由于变形作用引起,包括温度变形(水泥的水化热、气温变化、环境生产热),收缩变形(塑性收缩、干燥收缩、碳化收缩)及地基不均匀沉降(膨胀)变形。

由于这些变形受到约束引起的应力超过混凝土的抗拉强度导致裂缝,统称“变形作用引起的裂缝”。

大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:

由内外温差而产生的;另一方面是混凝土的外部因素:

结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但抗拉能力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。

这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。

而产生裂缝的主要原因有以下几点造成:

(1)材料不良引起的裂缝;

(2)施工不当引起的裂缝;(3)温差引起的裂缝;(4)混凝土收缩引起的裂缝;(5)荷载引起的裂缝;(6)非荷载原因(如温度、收缩、不均匀沉降、冻胀等因素)引起的裂缝。

五、大体积混凝土裂缝分析

混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104。

裂缝深度h与结构厚度H的关系如下:

h≤0.1H表面裂缝;0.1H0℃时,C1=4.2,C2=0;反之C1=2.1,C2=335.

本实例中的混凝土拌和温度为:

TO=[0.9(285*40+716*35+1070*35+60*35+100*35)+4.2*30(172-716*3%)+4.2*3%*716*35]÷4.2*

172+0.9(285+716+1070+60+100)]=34.3℃.

(2)混凝土浇筑温度计算:

按公式TJ=TO-(α.Tn+0.032n)*(TO-YQ)式中:

TJ—混凝土浇筑温度(℃);TO—混凝土拌和温度(℃);TQ—混凝土运送、浇筑时环境气温(℃);Tn—混凝土自开始运输至浇筑完成时间(h);n—混凝土运转次数。

α--温度损失系数(/h)本例中,若Tn取1/3,n取1,α取0.25,则:

TJ=34.3-(0.25×1/3+0.032×1)×(34.3-32)=34.0℃

3.2混凝土的绝热温升计算

Th=WO.QO/(C.ρ)

式中:

WO—每立方米混凝土中的水泥用量(Kg/m3);QO—每公斤水泥的累积最终热量(KJ/Kg);C—混凝土的比热容取0.97(KJ/Kg.k);ρ—混凝土的质量密度(Kg/m3)

Th=(285*375)/(0.97*2390)=55.8℃

3.3混凝土的内部实际温度

Tm=TJ+ξ•Th

式中:

TJ—混凝土浇筑温度;Th—混凝土最终绝热温升;ξ—温将系数查建筑施工手册,若混凝土浇筑厚度4.0m,则:

ξ3取0.74,ξ15取0.55,ξ21取0.37.Tm(3)=34.0+0.74*55.8=75.3℃;

Tm(15)=34.0+0.55*55.8=64.7℃;

Tm(21)=34.0+0.37*55.8=54.6℃.3.4混凝土表面温度计算

Tb(T)=Tq+4h,(H-h,)△T(T)/H2式中:

Tb(T)—龄期T时混凝土表面温度(℃);Tq--龄期T时的大气温度(℃);H—混凝土结构的计算厚度(m)。

按公式H=2h+h,计算,h—混凝土结构的实际厚度(m);h,--混凝土结构的虚厚度(m);h,=K•λ/Βk=--计算折减系统取0.666,λ—混凝土的导热系数取2.33W/m•K

β—模板及保温层传热系数(W/m2•K);

β值按公式β=1/(∑δi/λi+1/βg)计算;δi—模板及各种保温材料厚度(m);λi—模板及各种保温材料的导热系数(W/m•K);βg—空气层传热系数可取23(W/m2•K).T(T)--龄期T时,混凝土中心温度与外界气温之差(℃):

T(T)=Tm(T)-Tq,

若保护层厚度取0.04m,混凝土灌注厚度为4m,则:

β=1/(0.003/58+0.04/0.06+1/23)=1.4:

1h,=K•λ/β=0.666×2.33/1.41=1.1;

H=2h+h,=4.0+2×1.1=6.2(m)

若Tq取32℃,则:

T(3)=75.3-32=43.3℃T(15)=64.7-32=32.7℃T(21)=54.6-32=22.6℃

则:

Tb(3)=32+4×1.1(6.2-1.1)×43.3/6.22=57.3℃Tb(15)=32+4×1.1(6.2-1.1)×32.7/6.22=51.1℃Tb(21)=32+4×1.1(6.2-1.1)×22.6/6.22=45.2℃3.5混凝土内部与混凝土表面温差计算

本工程中:

T(3)s=75.3-57.3=18℃△T(15)s=64.7-51.1=13.6℃△T(21)s=54.6-45.2=9.4℃

4、计算结果分析

从以上计算可以看出,混凝土3d龄期时内外温度差达到最大值18℃,符合混凝土内外温差小于25℃的技术要求。

但必须看到计算结果是基于养护环境温度为32℃,表面保温措施得当,入模混凝土温度为34℃条件下得出的。

实际施工养护中有可能无法满足以上条件要求。

2021年8月19日实测C30混凝土拌和后温度未36℃,当时拌和水温度为30℃,环境温度为32℃,若养护环境温度为夜间较低时的情况,假设为23℃,则△T(3)s=22.6℃,加上保温措施有可能达不到要求,有产生温度裂缝的可能,因此有必要采取一丁的措施防止温度裂缝的产生。

5、大体积混凝土施工技术措施

(1)降低混凝土入模温度。

包括:

浇筑大体积混凝土时应选择较适宜的气温,尽量避开炎热天气浇筑。

可采用温度较低的地下水搅拌混凝土,或在混凝土拌和水中加入冰块,同时对骨料进行遮阳保护、洒水降温等措施,以降低混凝土拌和物的入模温度,掺加相应的缓凝型减水剂。

(2)加强施工中的温度控制。

包括:

在混凝土浇筑之后,做好混凝土的保温保湿养护,以使混凝土缓缓降温,充分发挥其徐变特性,减低温度应力。

应坚决避免曝晒,注意温湿,采取长时间的养护,确定合理的拆模时间,以延缓降温速度,延长降温时间,充分发挥混凝土的“应力松弛效应”;加强测温和温度监测。

可采用热敏温度计监测或专人多点监测,以随时掌握与控制混凝土内的温度变化。

混凝土内外温差应控制在25℃以内,基面温差和基底面温差均控制在20℃以内,并及时调整保温及养护措施,使混凝土的温度梯度和湿度不致过大,以有效控制有害裂缝的出现(养护措施详见大体积砼浇筑方案)。

(3)提高混凝土的抗拉强度。

包括:

控制集料含泥量。

砂、石含泥量过大,不仅增加混凝土的收缩而且降低混凝土的抗拉强度,对混凝土的抗裂十分不利,因此在混凝土拌制时必须严格控制砂、石的含泥量,将石子含泥量控制在1%以下,中砂含泥量控制在2%以下,减少因砂、石含泥量过大对混凝土抗裂的不利影响;改善混凝土施工工艺。

加强早期养护,提高混凝土早期及相应龄期的抗拉强度和弹性模量;在大体积混凝土基础表面及内部设置必要的温度配筋,以

改善应力分部,防止裂缝的出现。

第三篇:

大体积混凝土温度裂缝浅析及控制方法

大体积混凝土温度裂缝浅析及控制方法

【摘要】随着我国经济的发展,工程建设规模越来越大型化、复杂化,这使得工程建设中的大体积混凝土温度裂缝问题日益突出并成为具有相当普遍性的问题。

文中通过分析大体积混凝土温度裂缝产生的原因,从中找到控制裂缝的措施及解决的方法,从而为保证建筑物和构件的安全奠定了基础。

1大体积混凝土温度裂缝的类型混凝土结构物的裂缝可分为微观裂缝和宏观裂缝。

微观裂缝主要有三种,一是骨料和水泥石粘合面上的裂缝,称为粘着裂缝;第二是水泥石自身的裂缝,称为水泥石裂缝;三是骨料本身裂缝,称为骨料裂缝。

微观裂缝在混凝土结构中的分布是不规则,不贯通的,并且肉眼看不见。

宏观裂缝是由微观裂缝扩展而来的。

温度,作为一种变形作用,在混凝土结构中引起的裂缝有表面裂缝和贯穿裂缝两种。

这两种裂缝在不同程度上都属于有害裂缝。

由于高层建筑、高耸结构物和大型设备基础大量的出现,大体积混凝土也被广泛采用,大体积混凝土结构的温度裂缝日益成为建筑工程技术人员面临的技术难题。

2大体积混凝土温度裂缝的成因

2.1概述

当混凝土结构产生变形时,在结构的内部、结构与结之间,都会受到约束。

当混凝土结构截面较厚时,其内部温度分布不均匀,引起内部不同部位的变形相互约束,称之为内约束,当一个结构物的变形受到其他结构的阻碍时称之为外约束。

建筑工程中的大体积混凝土结构所承受的变形,主要是由温差和收缩产生,其约束既有外约束又有内约束。

大体积钢筋混凝土结构中,由于结构截面大,体积大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩膨胀作用,由此引起的温度应力是导致钢筋混凝土产生裂缝的主要原因。

这种裂缝的起因是温度变化引起的变形,当变形得不到满足时才会引起应力,而且应力与结构的刚度大小有关,只有当应力超过一定数值才引起裂缝。

2.2温度变化引起变形在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化。

实际混凝土内部的最高温度多数发生在混凝土浇筑的最初3到5天,随着混凝土龄期的增长,温度逐渐下降,而弹性模量增高,因此混凝土内部降温收缩的约束也就愈来愈大,以致产生很大的拉应力,当混凝土的抗拉强度不足以抵抗这种应力时,开始出现温度裂缝。

2.3变形受到约束,引起应力当大体积混凝土浇筑在基岩或老混凝土上时,由于基岩(或老混凝土)的压缩模量(或弹性模量)较高,混凝土温度变化所产生的变形受到基岩(或老混凝土)的约束,而在新浇混凝土内部形成温度应力,在升温阶段,约束阻止新浇混凝土的温度膨胀变形,在混凝土内形成压应力。

而在降温阶段,新浇混凝土收缩(降温收缩与干缩)因存在较强大的地基或基础的约束而不能自由收缩,在新浇混凝土内形成拉应力。

2.4应力超过了混凝土的抗拉强度,导致裂缝的产生混凝土早期抗拉强度是很低的。

值得注意的是随着水泥标号的提高,水泥用量的不断增加,抗拉强度也会相应增加。

另外,由于水化热的影响,1天龄期的小试件强度可比实际大尺寸构件中的强度低50%,也就是说导致混凝土构件的早期强度降低;而28天龄期的小试件强度则可比实际构件强度高30%;也就是说对设计而言不安全。

因此这也是要限制最高温度的一个原因。

2.5外界气温变化的影响大体积混凝土在施工期间,外界气温变化的影响也很大。

混凝土的内部温度是浇筑温度、水化热的绝热温升和结构散热降温等各种温度的叠加之和,外界气温愈高,混凝土的结构温度也愈高,如外界温度下降,会增加混凝土的降温幅度,特别是在外界气温骤降时,会增加外层混凝土与内部混凝土的温度梯度。

温度应力是由温差引起的变形造成的,温差愈大,温度应力也愈大。

在高温条件下,大体积混凝土不易散热,混凝土内部的最高温度可达60ºC,并且有较大的延续时间。

在这种情况下研究合理的温度控制措施,防止混凝土内外温差引起的过大温度应力显得更为重要。

2.6混凝土的收缩变形混凝土收缩变形引起的温度应力大于混凝土的抗拉强度时,就会产生裂缝,因此混凝土的收缩也是引起裂缝不可忽视的因素。

3大体积混凝土温度裂缝控制及措施

在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。

因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,是防止混凝土出现有害的温度裂缝的关键问题。

我们将大体积混凝土温度裂缝的基本控制措施分为设计措施、施工措施和监测措施。

随着材料科学的发展和施工技术的完善,现场大体积混凝土的施工积累了不少经验,如留永久性变形缝或伸缩缝、用蛇形冷却水管来降低大体积混凝土内部温度、采用液态氮降低混凝土入模温度以及使用微膨胀混凝土减缓干缩等等。

总上所述,为防止裂缝、减轻温度应力,我们主要是从控制温度和改善约束条件两个方面着手。

3.1控制温度的措施

①采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;

②拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;

③热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;

④在混凝土中埋设水管,通入冷水降温;

⑤规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发急剧的温度梯度;

⑥施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保护措施;

⑦使用低热或中热水泥。

水泥的主要发热成分是铝酸三钙(C3A)和硅酸三钙(C3S),制造时适当降低这两种成分的含量即可降低其水化热。

3.2改善约束条件的措施

①合理地分缝分块;

②避免基础过大起伏;

③合理的安排施工工序,避免过大的高差和侧面长期暴露;

此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。

根据以上述分析,大体积混凝土在三个阶段产生的温度应力均与内外部的温差有关,因此,有效的控制混凝土内外温差,就成为了有效控制温度应力的关键。

对此,《混凝土结构工程施工及验收规范》曾作了如下要求“大体积混凝上表面和内部温差应控制在设计要求的范围内,当设计无具体要求时,温差不宜超过25ºC”,并对浇筑温度也作了“不宜超过28ºC”的规定。

对于大体积混凝土的温差控制一般从三方面着手:

第一是控制混凝土的绝对发热量;第二是采取有效措施降低混凝土内外温差;第三是改善周围的约束条件,改进配筋状况,减小裂缝宽度。

所以,要真正实现大体积混凝土的质量控制,则应从原材料、设计、施工等各个环节抓起。

4结束语

总之,大体积混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格,模板变形,基础不均匀沉降等。

为了保证建筑物和构件的安全,我们一方面要从控制温度、改变约束、降低温度着手,另一方面应可能设法提高混凝土的抗裂性能。

只有在施工中采取以上行之有效的措施,才能控制裂缝的出现或延伸,进而保证建筑物安全、稳定的工作。

第四篇:

浅析大体积混凝土裂缝控制措施

(2)

地下防水综合施工技术

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2