钢筋混凝土结构受扭构件的强度及变形原文.docx

上传人:b****2 文档编号:17157110 上传时间:2023-07-22 格式:DOCX 页数:16 大小:624.95KB
下载 相关 举报
钢筋混凝土结构受扭构件的强度及变形原文.docx_第1页
第1页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第2页
第2页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第3页
第3页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第4页
第4页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第5页
第5页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第6页
第6页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第7页
第7页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第8页
第8页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第9页
第9页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第10页
第10页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第11页
第11页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第12页
第12页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第13页
第13页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第14页
第14页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第15页
第15页 / 共16页
钢筋混凝土结构受扭构件的强度及变形原文.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

钢筋混凝土结构受扭构件的强度及变形原文.docx

《钢筋混凝土结构受扭构件的强度及变形原文.docx》由会员分享,可在线阅读,更多相关《钢筋混凝土结构受扭构件的强度及变形原文.docx(16页珍藏版)》请在冰点文库上搜索。

钢筋混凝土结构受扭构件的强度及变形原文.docx

钢筋混凝土结构受扭构件的强度及变形原文

StrengthandDeformationofMemberswithTorsion

8.1INTRODUCTION

Torsioninreinforcedconcretestructuresoftenarisesfromcontinuitybetweenmembers.Forthisreasontorsionreceived;relativelyscantattentionduringthefirsthalfofthiscentury,andtheomissionfromdesignconsiderationsapparentlyhadnoseriousconsequences.During;thelast10to15years,agreatincreaseinresearchactivityhasadvancedtheunderstandingoftheproblemsignificantly.Numerousaspectsoftorsioninconcretehavebeen,andcurrentlyarebeing,examinedinvariouspartsoftheworld.ThefirstsignificantorganizedpoolingofknowledgeandresearcheffortinthisfieldwasasymposiumsponsoredbytheAmericanConcreteInstitute.Thesymposiumvolumealsoreviewsmuchofthevaluablepioneeringwork.

Mostcodereferencestotorsiontodatehavereliedonideasborrowedfromthebehaviorofhomogeneousisotropicelasticmaterials.ThecurrentACIcode8.2incorporatesforthefirsttimedetaileddesignrecommendationsfortorsion.Theserecommendationsarebasedonaconsiderablevolumeofexperimentalevidence,buttheyarelikelytobefurthermodifiedasadditionalinformationfromcurrentresearcheffortsisconsolidated.

Torsionmayariseasaresultofprimaryorsecondaryactions.Thecaseofprimarytorsionoccurswhentheexternalloadhasnoalternativetobeingresistedbutbytorsion.Insuchsituationsthetorsion,requiredtomaintainstaticequilibrium,canbeuniquelydetermined.Thiscasemayalsoberefer-redtoasequilibriumtorsion.Itisprimarilyastrengthproblembecausethestructure,oritscomponent,willcollapseifthetorsionalresistancecannotbesupplied.Asimplebeam,receivingeccentriclineloadingsalongitsspan,cantileversandeccentricallyloadedboxgirders,asillustratedinFigs.8.1and8.8,areexamplesofprimaryorequilibriumtorsion.

Instaticallyindeterminatestructures,torsioncartalsoariseasasecondaryactionfromtherequirementsofcontinuity.Disregardforsuchcontinuityinthedesignmayleadtoexcessivecrackwidthsbutneednothavemoreseriousconsequences.Oftendesignersintuitivelyneglectsuchsecondarytorsionaleffects.Theedgebeamsofframes,supportingslabsorsecondary-beams,aretypicalofthissituation(seeFig.8.2).Inarigidjointedspacestructureitishardlypossibletoavoidtorsionarisingfromthecompatibilityofdeformations.Certainstructures,suchasshellselasticallyrestrainedbyedgebeams,"aremoresensitivetothistypeoftorsionthanareother.

Thepresentstateofknowledgeallowsarealisticassessment.ofthetorsionthatmayariseinstaticallyindeterminatereinforcedconcretestructuresatvariousstagesoftheloading.

 

Torsioninconcretestructuresrarelyoccurs.withoutotheractions.

Usuallyflexure,shear,andaxialforcesarealsopresent.Agreatmanyofthemorerecentstudieshaveattemptedtoestablishthelawsofinteractionsthatmayexistbetweentorsionandotherstructuralactions.Becauseofthelargenumberofparametersinvolved,someeffortisstillrequiredtoassessreliablyallaspectsofthiscomplexbehavior.

8.2PLAINCONCRETESUBJECTTOTORSION

Thebehaviorofreinforcedconcreteintorsion,beforetheonsetofcracking,canbebasedorsthestudyofplainconcretebecausethecontributionofrein-forcementatthisstageisnegligible.

8.2.1ElasticBehavior

Fortheassessmentoftorsionaleffectsinplainconcrete,wecanusethewell-knownapproachpresentedinmosttextsonstructuralmechanics.TheclassicalsolutionofSt.Venantcanbeappliedtothecommonrectangularconcretesection.Accordingly,themaximumtorsionalshearingstressvtisgeneratedatthemiddleofthelongsideandcanbeobtainedfrom

whereT=torsionalmomentatthesection

y,x=overalldimensionsoftherectangularsection,x

Ψt=astressfactorbeingafunctiony/x,asgiveninFig.8.3

Itmaybeequallyasimportanttoknowtheload-displacementrelationshipforthemember.Thiscanbederivedfromthefamiliarrelationship.

whereθt,=theangleoftwist

T=theappliedtorque,whichmaybeafunctionofthedistancealongthespan

G=themodulusinshearasdefinedinEq.7.37

C=thetorsionalmomentofinertia,sometimesreferredtoastorsionconstantorequivalentpolarmomentsofinertia

z=distancealongmember

Forrectangularsections,wehave

inwhichβt,acoefficientdependentontheaspectratioy/xofthesection(Fig.8.3),allowsforthenonlineardistributionofshearstrainsacrossthesection.

Thesetermsenablethetorsionalstiffnessofamemberoflengthsection.ltobedefinedasthemagnitudeofthetorquerequiredtocauseunitangleoftwistoverthislengthas

Inthegeneralelasticanalysisofastaticallyindeterminatestructure,boththetorsionalstiffnessandtheflexuralstiffnessofmembersmayberequired.Equation8.4forthetorsionalstiffnessofamembermaybecomparedwiththeequationfortheflexuralstiffnessofamemberwithfarendrestrained,definedasthemomentrequiredtocauseunitrotation,4EI/1,whereEI=flexuralrigidityofasection.

Thebehaviorofcompoundsections,TandLshapes,ismorecomplex.However,followingBach'ssuggestion,itiscustomarytoassumethatasuitablesubdivisionofthesectionintoitsconstituentrectanglesisanaccept-ableapproximationfordesignpurposes.Accordinglyitisassumedthateach,rectangleresistsaportionoftheexternaltorqueinproportiontoitstorsionalrigidity.AsFig.8.4ashows,theoverhangingpartsoftheflangesshouldbetakenwithoutoverlapping.Inslabsformingtheflangesofbeams,theeffectivelengthofthecontributingrectangleshouldnotbetakenasmorethanthreetimestheslabthickness.Forthecaseofpuretorsion,thisisaconservativeapproximation.

UsingBach'sapproximation,8.5theportionofthetotaltorqueTresistedbyelement2inFig.8.4ais

andtheresultingmaximumtorsionalshearstressisfromEq.8.1

Theapproximationisconservativebecausethe"junctioneffect"hasbeenneglected.

Compoundsectionsinwhichshearmustbesubdividedinadifferentway.Theelastictorsionalshearstressflowcanoccur,asinboxsections,Figure8.4cillustratestheprocedure.distributionovercompoundcrosssectionsmaybebestvisualizedbyPrandtl'smembraneanalogy,theprinciplesofwhichmaybefoundinstandardworksconcretestructures,weseldomencountertheonelasticity."Inreinforcedforegoingassumptionsassociatedwithlinearconditionsunderwhichtheelasticbehavioraresatisfied.

8.2.2PlasticBehavior

Inductilematerialsitispossibletoattainastateatwhichyieldinshearoccuroverthewholeareaofaparticularcrosssection.Ifyieldingoccursoverthewholesection,theplastictorquecanbecomputedwithrelativeease.

ConsiderthesquaresectionappearinginFig.8.5,whereyieldinshearVtyhassetinthequadrants.ThetotalshearforceVactingoveronequadrantis

ThesameresultsmaybeobtainedusingNadai's‘sandheapanalogy.’Accordingtothisanalogythevolumeofsandplacedoverthegivencrosssectionisproportionaltotheplastictorquesustainedbythissection.theheap(orroof)overtherectangularsection(seeFig.8.6)hasaheightxv.

wherex=smalldimensionofthecrosssection.midoverthesquaresection(Fig.8.5)is

Thevolumeoftheheapovertheoblongsection(Fig.8.6)is

ItisevidentthatΨty=3whenx/y=IandO,y=2whenx/y=0

ItmaybeseenthatEq.8.7issimilartotheexpressionobtainedforelasticbehavior,Eq.8.1.

Concreteisnotductileenough,particularlyintension,topermitaperfectplasticdistributionofshearstresses.Thereforetheultimatetorsionalstrengthofaplainconcretesectionwillbebetweenthevaluespredictedbythemembrane(fullyelastic)andsandheap(fullyplastic)analogies.Shearstressescausediagonal(principal)tensilestresses,whichinitiate,thefailure.Inthelightoftheforegoingapproximationsandthevariabilityofthetensilestrengthofconcrete,thesimplifieddesignequationforthedeterminationofthenominalultimatesections,proposedbyshearstressinducedbytorsioninplainconcreteACI318-71,isacceptable:

wherex≤y.

Thevalueof3fortisorty,3,isaminimumfortheelastictheoryandamaxi-mumfortheplastictheory(seeFig.8.3andEq.8.7a).

TheultimatetorsionalresistanceofcompoundsectionscanbematedbythesummationofthecontributionoftheconstituentsectionssuchasthoseinFig.8.4,theapproximationis

wherex≤yforeachrectangle.

Theprincipalstress(tensilestrength)conceptwouldsuggestthatfailurecracksshoulddevelopateachfaceofthebeamalongaspiralrunningat450tothebeamaxis.However,thisisnotpossiblebecausetheboundaryofthefailuresurfacemustformaclosedloop.Hsuhassuggestedthatbendingoccursaboutanaxisparalleltotheplanesthatisatapproximately450tothebeamaxisandofthelongfacesofarectangularbeam.Thisbendingcausescompressionbeam.Thelattertensioncrackingeventuallyandtensilestressesinthe450planeacrosstheinitiatesasurfacecrack.Assoonasflexuraloccurstheflexuralstrengthofthesectionisreduced,thecrackrapidlypropagates,andsuddenfailurefollows.Hsuobservedthissequenceoffailurewiththeaidofhigh-speedmotionpictures.Formoststructureslittleusecanbemadeofthetorsional(tensile)strengthofunreinforcedconcretemembers.

8.2.3TubularSections

Becauseoftheadvantageousefficientinresistingdistributionofshearstresses,tubularsectionsaremostresistingtorsion.Theyarewidelyusedinbridgeconstruction.Figure8.7illustratesthebasicformsusedforb

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2